Step |
Hyp |
Ref |
Expression |
1 |
|
isnzr2hash.b |
|- B = ( Base ` R ) |
2 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
4 |
2 3
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
5 |
1 2
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
6 |
1 3
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. B ) |
7 |
|
1xr |
|- 1 e. RR* |
8 |
7
|
a1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 e. RR* ) |
9 |
|
prex |
|- { ( 1r ` R ) , ( 0g ` R ) } e. _V |
10 |
|
hashxrcl |
|- ( { ( 1r ` R ) , ( 0g ` R ) } e. _V -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) e. RR* ) |
11 |
9 10
|
mp1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) e. RR* ) |
12 |
1
|
fvexi |
|- B e. _V |
13 |
|
hashxrcl |
|- ( B e. _V -> ( # ` B ) e. RR* ) |
14 |
12 13
|
mp1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` B ) e. RR* ) |
15 |
|
1lt2 |
|- 1 < 2 |
16 |
|
hashprg |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) = 2 ) ) |
17 |
16
|
biimpa |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) = 2 ) |
18 |
15 17
|
breqtrrid |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 < ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) ) |
19 |
|
simpl |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) ) |
20 |
|
fvex |
|- ( 1r ` R ) e. _V |
21 |
|
fvex |
|- ( 0g ` R ) e. _V |
22 |
20 21
|
prss |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) <-> { ( 1r ` R ) , ( 0g ` R ) } C_ B ) |
23 |
19 22
|
sylib |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> { ( 1r ` R ) , ( 0g ` R ) } C_ B ) |
24 |
|
hashss |
|- ( ( B e. _V /\ { ( 1r ` R ) , ( 0g ` R ) } C_ B ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) <_ ( # ` B ) ) |
25 |
12 23 24
|
sylancr |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) <_ ( # ` B ) ) |
26 |
8 11 14 18 25
|
xrltletrd |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 < ( # ` B ) ) |
27 |
26
|
ex |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) -> ( ( 1r ` R ) =/= ( 0g ` R ) -> 1 < ( # ` B ) ) ) |
28 |
5 6 27
|
syl2anc |
|- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) -> 1 < ( # ` B ) ) ) |
29 |
28
|
imdistani |
|- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( R e. Ring /\ 1 < ( # ` B ) ) ) |
30 |
|
simpl |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> R e. Ring ) |
31 |
1 2 3
|
ring1ne0 |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
32 |
30 31
|
jca |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
33 |
29 32
|
impbii |
|- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) <-> ( R e. Ring /\ 1 < ( # ` B ) ) ) |
34 |
4 33
|
bitri |
|- ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` B ) ) ) |