| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnzr2hash.b |
|- B = ( Base ` R ) |
| 2 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 4 |
2 3
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 5 |
1 2
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 6 |
1 3
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. B ) |
| 7 |
|
1xr |
|- 1 e. RR* |
| 8 |
7
|
a1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 e. RR* ) |
| 9 |
|
prex |
|- { ( 1r ` R ) , ( 0g ` R ) } e. _V |
| 10 |
|
hashxrcl |
|- ( { ( 1r ` R ) , ( 0g ` R ) } e. _V -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) e. RR* ) |
| 11 |
9 10
|
mp1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) e. RR* ) |
| 12 |
1
|
fvexi |
|- B e. _V |
| 13 |
|
hashxrcl |
|- ( B e. _V -> ( # ` B ) e. RR* ) |
| 14 |
12 13
|
mp1i |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` B ) e. RR* ) |
| 15 |
|
1lt2 |
|- 1 < 2 |
| 16 |
|
hashprg |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) -> ( ( 1r ` R ) =/= ( 0g ` R ) <-> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) = 2 ) ) |
| 17 |
16
|
biimpa |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) = 2 ) |
| 18 |
15 17
|
breqtrrid |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 < ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) ) |
| 19 |
|
simpl |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) ) |
| 20 |
|
fvex |
|- ( 1r ` R ) e. _V |
| 21 |
|
fvex |
|- ( 0g ` R ) e. _V |
| 22 |
20 21
|
prss |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) <-> { ( 1r ` R ) , ( 0g ` R ) } C_ B ) |
| 23 |
19 22
|
sylib |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> { ( 1r ` R ) , ( 0g ` R ) } C_ B ) |
| 24 |
|
hashss |
|- ( ( B e. _V /\ { ( 1r ` R ) , ( 0g ` R ) } C_ B ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) <_ ( # ` B ) ) |
| 25 |
12 23 24
|
sylancr |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( # ` { ( 1r ` R ) , ( 0g ` R ) } ) <_ ( # ` B ) ) |
| 26 |
8 11 14 18 25
|
xrltletrd |
|- ( ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> 1 < ( # ` B ) ) |
| 27 |
26
|
ex |
|- ( ( ( 1r ` R ) e. B /\ ( 0g ` R ) e. B ) -> ( ( 1r ` R ) =/= ( 0g ` R ) -> 1 < ( # ` B ) ) ) |
| 28 |
5 6 27
|
syl2anc |
|- ( R e. Ring -> ( ( 1r ` R ) =/= ( 0g ` R ) -> 1 < ( # ` B ) ) ) |
| 29 |
28
|
imdistani |
|- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( R e. Ring /\ 1 < ( # ` B ) ) ) |
| 30 |
|
simpl |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> R e. Ring ) |
| 31 |
1 2 3
|
ring1ne0 |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 32 |
30 31
|
jca |
|- ( ( R e. Ring /\ 1 < ( # ` B ) ) -> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 33 |
29 32
|
impbii |
|- ( ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) <-> ( R e. Ring /\ 1 < ( # ` B ) ) ) |
| 34 |
4 33
|
bitri |
|- ( R e. NzRing <-> ( R e. Ring /\ 1 < ( # ` B ) ) ) |