| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isoas.p | 
							 |-  P = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							isoas.m | 
							 |-  .- = ( dist ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							isoas.i | 
							 |-  I = ( Itv ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							isoas.l | 
							 |-  L = ( LineG ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							isoas.g | 
							 |-  ( ph -> G e. TarskiG )  | 
						
						
							| 6 | 
							
								
							 | 
							isoas.a | 
							 |-  ( ph -> A e. P )  | 
						
						
							| 7 | 
							
								
							 | 
							isoas.b | 
							 |-  ( ph -> B e. P )  | 
						
						
							| 8 | 
							
								
							 | 
							isoas.c | 
							 |-  ( ph -> C e. P )  | 
						
						
							| 9 | 
							
								
							 | 
							isoas.1 | 
							 |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) )  | 
						
						
							| 10 | 
							
								
							 | 
							isoas.2 | 
							 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" A C B "> )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( cgrG ` G ) = ( cgrG ` G )  | 
						
						
							| 12 | 
							
								1 4 3 5 6 7 8 9
							 | 
							ncolrot1 | 
							 |-  ( ph -> -. ( A e. ( B L C ) \/ B = C ) )  | 
						
						
							| 13 | 
							
								1 2 3 5 7 8
							 | 
							axtgcgrrflx | 
							 |-  ( ph -> ( B .- C ) = ( C .- B ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( hlG ` G ) = ( hlG ` G )  | 
						
						
							| 15 | 
							
								1 3 5 14 6 7 8 6 8 7 10
							 | 
							cgracom | 
							 |-  ( ph -> <" A C B "> ( cgrA ` G ) <" A B C "> )  | 
						
						
							| 16 | 
							
								1 3 2 5 6 8 7 6 7 8 15
							 | 
							cgraswaplr | 
							 |-  ( ph -> <" B C A "> ( cgrA ` G ) <" C B A "> )  | 
						
						
							| 17 | 
							
								1 2 3 5 7 8 6 8 7 6 4 12 13 16 10
							 | 
							tgasa | 
							 |-  ( ph -> <" B C A "> ( cgrG ` G ) <" C B A "> )  | 
						
						
							| 18 | 
							
								1 2 3 11 5 7 8 6 8 7 6 17
							 | 
							cgr3simp3 | 
							 |-  ( ph -> ( A .- B ) = ( A .- C ) )  |