| Step |
Hyp |
Ref |
Expression |
| 1 |
|
invisoinv.b |
|- B = ( Base ` C ) |
| 2 |
|
invisoinv.i |
|- I = ( Iso ` C ) |
| 3 |
|
invisoinv.n |
|- N = ( Inv ` C ) |
| 4 |
|
invisoinv.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
invisoinv.x |
|- ( ph -> X e. B ) |
| 6 |
|
invisoinv.y |
|- ( ph -> Y e. B ) |
| 7 |
|
invisoinv.f |
|- ( ph -> F e. ( X I Y ) ) |
| 8 |
|
invcoisoid.1 |
|- .1. = ( Id ` C ) |
| 9 |
|
isocoinvid.o |
|- .o. = ( <. Y , X >. ( comp ` C ) Y ) |
| 10 |
1 2 3 4 5 6 7
|
invisoinvl |
|- ( ph -> ( ( X N Y ) ` F ) ( Y N X ) F ) |
| 11 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
| 12 |
1 3 4 6 5 11
|
isinv |
|- ( ph -> ( ( ( X N Y ) ` F ) ( Y N X ) F <-> ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) ) ) |
| 13 |
|
simpl |
|- ( ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F /\ F ( X ( Sect ` C ) Y ) ( ( X N Y ) ` F ) ) -> ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) |
| 14 |
12 13
|
biimtrdi |
|- ( ph -> ( ( ( X N Y ) ` F ) ( Y N X ) F -> ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) ) |
| 15 |
10 14
|
mpd |
|- ( ph -> ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F ) |
| 16 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 17 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 18 |
1 16 2 4 6 5
|
isohom |
|- ( ph -> ( Y I X ) C_ ( Y ( Hom ` C ) X ) ) |
| 19 |
1 3 4 5 6 2
|
invf |
|- ( ph -> ( X N Y ) : ( X I Y ) --> ( Y I X ) ) |
| 20 |
19 7
|
ffvelcdmd |
|- ( ph -> ( ( X N Y ) ` F ) e. ( Y I X ) ) |
| 21 |
18 20
|
sseldd |
|- ( ph -> ( ( X N Y ) ` F ) e. ( Y ( Hom ` C ) X ) ) |
| 22 |
1 16 2 4 5 6
|
isohom |
|- ( ph -> ( X I Y ) C_ ( X ( Hom ` C ) Y ) ) |
| 23 |
22 7
|
sseldd |
|- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 24 |
1 16 17 8 11 4 6 5 21 23
|
issect2 |
|- ( ph -> ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) |
| 25 |
9
|
a1i |
|- ( ph -> .o. = ( <. Y , X >. ( comp ` C ) Y ) ) |
| 26 |
25
|
eqcomd |
|- ( ph -> ( <. Y , X >. ( comp ` C ) Y ) = .o. ) |
| 27 |
26
|
oveqd |
|- ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( F .o. ( ( X N Y ) ` F ) ) ) |
| 28 |
27
|
eqeq1d |
|- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( .1. ` Y ) <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) |
| 29 |
24 28
|
bitrd |
|- ( ph -> ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) |
| 30 |
15 29
|
mpbid |
|- ( ph -> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) |