Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | isodd | |- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |- ( z = Z -> ( z + 1 ) = ( Z + 1 ) ) |
|
2 | 1 | oveq1d | |- ( z = Z -> ( ( z + 1 ) / 2 ) = ( ( Z + 1 ) / 2 ) ) |
3 | 2 | eleq1d | |- ( z = Z -> ( ( ( z + 1 ) / 2 ) e. ZZ <-> ( ( Z + 1 ) / 2 ) e. ZZ ) ) |
4 | df-odd | |- Odd = { z e. ZZ | ( ( z + 1 ) / 2 ) e. ZZ } |
|
5 | 3 4 | elrab2 | |- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) ) |