Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | isodd2 | |- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd | |- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) ) |
|
2 | zob | |- ( Z e. ZZ -> ( ( ( Z + 1 ) / 2 ) e. ZZ <-> ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
|
3 | 2 | pm5.32i | |- ( ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) ) |
4 | 1 3 | bitri | |- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) ) |