Metamath Proof Explorer


Theorem isodd2

Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd number decreased by 1 and then divided by 2 is still an integer. (Contributed by AV, 15-Jun-2020)

Ref Expression
Assertion isodd2
|- ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) )

Proof

Step Hyp Ref Expression
1 isodd
 |-  ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) )
2 zob
 |-  ( Z e. ZZ -> ( ( ( Z + 1 ) / 2 ) e. ZZ <-> ( ( Z - 1 ) / 2 ) e. ZZ ) )
3 2 pm5.32i
 |-  ( ( Z e. ZZ /\ ( ( Z + 1 ) / 2 ) e. ZZ ) <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) )
4 1 3 bitri
 |-  ( Z e. Odd <-> ( Z e. ZZ /\ ( ( Z - 1 ) / 2 ) e. ZZ ) )