Metamath Proof Explorer


Theorem isoddgcd1

Description: The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020) (Revised by AV, 8-Aug-2021)

Ref Expression
Assertion isoddgcd1
|- ( Z e. ZZ -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) )

Proof

Step Hyp Ref Expression
1 2prm
 |-  2 e. Prime
2 coprm
 |-  ( ( 2 e. Prime /\ Z e. ZZ ) -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) )
3 1 2 mpan
 |-  ( Z e. ZZ -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) )