Step |
Hyp |
Ref |
Expression |
1 |
|
dmexg |
|- ( x e. _V -> dom x e. _V ) |
2 |
1
|
adantl |
|- ( ( C e. Cat /\ x e. _V ) -> dom x e. _V ) |
3 |
2
|
ralrimiva |
|- ( C e. Cat -> A. x e. _V dom x e. _V ) |
4 |
|
eqid |
|- ( x e. _V |-> dom x ) = ( x e. _V |-> dom x ) |
5 |
4
|
fnmpt |
|- ( A. x e. _V dom x e. _V -> ( x e. _V |-> dom x ) Fn _V ) |
6 |
3 5
|
syl |
|- ( C e. Cat -> ( x e. _V |-> dom x ) Fn _V ) |
7 |
|
ovex |
|- ( x ( Sect ` C ) y ) e. _V |
8 |
7
|
inex1 |
|- ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V |
9 |
8
|
a1i |
|- ( ( C e. Cat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
10 |
9
|
ralrimivva |
|- ( C e. Cat -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V ) |
11 |
|
eqid |
|- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
12 |
11
|
fnmpo |
|- ( A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
13 |
10 12
|
syl |
|- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
14 |
|
df-inv |
|- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
15 |
|
fveq2 |
|- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
16 |
|
fveq2 |
|- ( c = C -> ( Sect ` c ) = ( Sect ` C ) ) |
17 |
16
|
oveqd |
|- ( c = C -> ( x ( Sect ` c ) y ) = ( x ( Sect ` C ) y ) ) |
18 |
16
|
oveqd |
|- ( c = C -> ( y ( Sect ` c ) x ) = ( y ( Sect ` C ) x ) ) |
19 |
18
|
cnveqd |
|- ( c = C -> `' ( y ( Sect ` c ) x ) = `' ( y ( Sect ` C ) x ) ) |
20 |
17 19
|
ineq12d |
|- ( c = C -> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) = ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
21 |
15 15 20
|
mpoeq123dv |
|- ( c = C -> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
22 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
23 |
|
fvex |
|- ( Base ` C ) e. _V |
24 |
23 23
|
pm3.2i |
|- ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) |
25 |
|
mpoexga |
|- ( ( ( Base ` C ) e. _V /\ ( Base ` C ) e. _V ) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
26 |
24 25
|
mp1i |
|- ( C e. Cat -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) e. _V ) |
27 |
14 21 22 26
|
fvmptd3 |
|- ( C e. Cat -> ( Inv ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
28 |
27
|
fneq1d |
|- ( C e. Cat -> ( ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
29 |
13 28
|
mpbird |
|- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
30 |
|
ssv |
|- ran ( Inv ` C ) C_ _V |
31 |
30
|
a1i |
|- ( C e. Cat -> ran ( Inv ` C ) C_ _V ) |
32 |
|
fnco |
|- ( ( ( x e. _V |-> dom x ) Fn _V /\ ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Inv ` C ) C_ _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
33 |
6 29 31 32
|
syl3anc |
|- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
34 |
|
isofval |
|- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
35 |
34
|
fneq1d |
|- ( C e. Cat -> ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
36 |
33 35
|
mpbird |
|- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |