| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmexg |
|- ( x e. _V -> dom x e. _V ) |
| 2 |
1
|
adantl |
|- ( ( C e. Cat /\ x e. _V ) -> dom x e. _V ) |
| 3 |
2
|
ralrimiva |
|- ( C e. Cat -> A. x e. _V dom x e. _V ) |
| 4 |
|
eqid |
|- ( x e. _V |-> dom x ) = ( x e. _V |-> dom x ) |
| 5 |
4
|
fnmpt |
|- ( A. x e. _V dom x e. _V -> ( x e. _V |-> dom x ) Fn _V ) |
| 6 |
3 5
|
syl |
|- ( C e. Cat -> ( x e. _V |-> dom x ) Fn _V ) |
| 7 |
|
invfn |
|- ( C e. Cat -> ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 8 |
|
ssv |
|- ran ( Inv ` C ) C_ _V |
| 9 |
8
|
a1i |
|- ( C e. Cat -> ran ( Inv ` C ) C_ _V ) |
| 10 |
|
fnco |
|- ( ( ( x e. _V |-> dom x ) Fn _V /\ ( Inv ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ran ( Inv ` C ) C_ _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 11 |
6 7 9 10
|
syl3anc |
|- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 12 |
|
isofval |
|- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
| 13 |
12
|
fneq1d |
|- ( C e. Cat -> ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 14 |
11 13
|
mpbird |
|- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |