Step |
Hyp |
Ref |
Expression |
1 |
|
isocnv |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
2 |
|
id |
|- ( `' H Isom S , R ( B , A ) -> `' H Isom S , R ( B , A ) ) |
3 |
|
isof1o |
|- ( `' H Isom S , R ( B , A ) -> `' H : B -1-1-onto-> A ) |
4 |
|
f1ofun |
|- ( `' H : B -1-1-onto-> A -> Fun `' H ) |
5 |
|
vex |
|- x e. _V |
6 |
5
|
funimaex |
|- ( Fun `' H -> ( `' H " x ) e. _V ) |
7 |
3 4 6
|
3syl |
|- ( `' H Isom S , R ( B , A ) -> ( `' H " x ) e. _V ) |
8 |
2 7
|
isofrlem |
|- ( `' H Isom S , R ( B , A ) -> ( R Fr A -> S Fr B ) ) |
9 |
1 8
|
syl |
|- ( H Isom R , S ( A , B ) -> ( R Fr A -> S Fr B ) ) |
10 |
|
id |
|- ( H Isom R , S ( A , B ) -> H Isom R , S ( A , B ) ) |
11 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
12 |
|
f1ofun |
|- ( H : A -1-1-onto-> B -> Fun H ) |
13 |
5
|
funimaex |
|- ( Fun H -> ( H " x ) e. _V ) |
14 |
11 12 13
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( H " x ) e. _V ) |
15 |
10 14
|
isofrlem |
|- ( H Isom R , S ( A , B ) -> ( S Fr B -> R Fr A ) ) |
16 |
9 15
|
impbid |
|- ( H Isom R , S ( A , B ) -> ( R Fr A <-> S Fr B ) ) |