| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> H Isom R , S ( A , B ) ) |
| 2 |
|
imassrn |
|- ( H " x ) C_ ran H |
| 3 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
| 4 |
|
f1of |
|- ( H : A -1-1-onto-> B -> H : A --> B ) |
| 5 |
|
frn |
|- ( H : A --> B -> ran H C_ B ) |
| 6 |
3 4 5
|
3syl |
|- ( H Isom R , S ( A , B ) -> ran H C_ B ) |
| 7 |
2 6
|
sstrid |
|- ( H Isom R , S ( A , B ) -> ( H " x ) C_ B ) |
| 8 |
|
ssexg |
|- ( ( ( H " x ) C_ B /\ B e. V ) -> ( H " x ) e. _V ) |
| 9 |
7 8
|
sylan |
|- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> ( H " x ) e. _V ) |
| 10 |
1 9
|
isofrlem |
|- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> ( S Fr B -> R Fr A ) ) |