Step |
Hyp |
Ref |
Expression |
1 |
|
isofrlem.1 |
|- ( ph -> H Isom R , S ( A , B ) ) |
2 |
|
isofrlem.2 |
|- ( ph -> ( H " x ) e. _V ) |
3 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
4 |
1 3
|
syl |
|- ( ph -> H : A -1-1-onto-> B ) |
5 |
|
f1ofn |
|- ( H : A -1-1-onto-> B -> H Fn A ) |
6 |
|
n0 |
|- ( x =/= (/) <-> E. y y e. x ) |
7 |
|
fnfvima |
|- ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H ` y ) e. ( H " x ) ) |
8 |
7
|
ne0d |
|- ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H " x ) =/= (/) ) |
9 |
8
|
3expia |
|- ( ( H Fn A /\ x C_ A ) -> ( y e. x -> ( H " x ) =/= (/) ) ) |
10 |
9
|
exlimdv |
|- ( ( H Fn A /\ x C_ A ) -> ( E. y y e. x -> ( H " x ) =/= (/) ) ) |
11 |
6 10
|
syl5bi |
|- ( ( H Fn A /\ x C_ A ) -> ( x =/= (/) -> ( H " x ) =/= (/) ) ) |
12 |
11
|
expimpd |
|- ( H Fn A -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) ) |
13 |
5 12
|
syl |
|- ( H : A -1-1-onto-> B -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) ) |
14 |
|
f1ofo |
|- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
15 |
|
imassrn |
|- ( H " x ) C_ ran H |
16 |
|
forn |
|- ( H : A -onto-> B -> ran H = B ) |
17 |
15 16
|
sseqtrid |
|- ( H : A -onto-> B -> ( H " x ) C_ B ) |
18 |
14 17
|
syl |
|- ( H : A -1-1-onto-> B -> ( H " x ) C_ B ) |
19 |
13 18
|
jctild |
|- ( H : A -1-1-onto-> B -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
20 |
4 19
|
syl |
|- ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
21 |
|
dffr3 |
|- ( S Fr B <-> A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) ) |
22 |
|
sseq1 |
|- ( z = ( H " x ) -> ( z C_ B <-> ( H " x ) C_ B ) ) |
23 |
|
neeq1 |
|- ( z = ( H " x ) -> ( z =/= (/) <-> ( H " x ) =/= (/) ) ) |
24 |
22 23
|
anbi12d |
|- ( z = ( H " x ) -> ( ( z C_ B /\ z =/= (/) ) <-> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
25 |
|
ineq1 |
|- ( z = ( H " x ) -> ( z i^i ( `' S " { w } ) ) = ( ( H " x ) i^i ( `' S " { w } ) ) ) |
26 |
25
|
eqeq1d |
|- ( z = ( H " x ) -> ( ( z i^i ( `' S " { w } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
27 |
26
|
rexeqbi1dv |
|- ( z = ( H " x ) -> ( E. w e. z ( z i^i ( `' S " { w } ) ) = (/) <-> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
28 |
24 27
|
imbi12d |
|- ( z = ( H " x ) -> ( ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) <-> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
29 |
28
|
spcgv |
|- ( ( H " x ) e. _V -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
30 |
2 29
|
syl |
|- ( ph -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
31 |
21 30
|
syl5bi |
|- ( ph -> ( S Fr B -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
32 |
20 31
|
syl5d |
|- ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
33 |
4
|
adantr |
|- ( ( ph /\ x C_ A ) -> H : A -1-1-onto-> B ) |
34 |
|
f1ofun |
|- ( H : A -1-1-onto-> B -> Fun H ) |
35 |
33 34
|
syl |
|- ( ( ph /\ x C_ A ) -> Fun H ) |
36 |
|
simpl |
|- ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> w e. ( H " x ) ) |
37 |
|
fvelima |
|- ( ( Fun H /\ w e. ( H " x ) ) -> E. y e. x ( H ` y ) = w ) |
38 |
35 36 37
|
syl2an |
|- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( H ` y ) = w ) |
39 |
|
simpr |
|- ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) |
40 |
|
ssel |
|- ( x C_ A -> ( y e. x -> y e. A ) ) |
41 |
40
|
imdistani |
|- ( ( x C_ A /\ y e. x ) -> ( x C_ A /\ y e. A ) ) |
42 |
|
isomin |
|- ( ( H Isom R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) ) |
43 |
1 41 42
|
syl2an |
|- ( ( ph /\ ( x C_ A /\ y e. x ) ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) ) |
44 |
|
sneq |
|- ( ( H ` y ) = w -> { ( H ` y ) } = { w } ) |
45 |
44
|
imaeq2d |
|- ( ( H ` y ) = w -> ( `' S " { ( H ` y ) } ) = ( `' S " { w } ) ) |
46 |
45
|
ineq2d |
|- ( ( H ` y ) = w -> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = ( ( H " x ) i^i ( `' S " { w } ) ) ) |
47 |
46
|
eqeq1d |
|- ( ( H ` y ) = w -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
48 |
43 47
|
sylan9bb |
|- ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
49 |
39 48
|
syl5ibr |
|- ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) |
50 |
49
|
exp42 |
|- ( ph -> ( x C_ A -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) ) |
51 |
50
|
imp |
|- ( ( ph /\ x C_ A ) -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
52 |
51
|
com3l |
|- ( y e. x -> ( ( H ` y ) = w -> ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
53 |
52
|
com4t |
|- ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
54 |
53
|
imp |
|- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
55 |
54
|
reximdvai |
|- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( E. y e. x ( H ` y ) = w -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
56 |
38 55
|
mpd |
|- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) |
57 |
56
|
rexlimdvaa |
|- ( ( ph /\ x C_ A ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
58 |
57
|
ex |
|- ( ph -> ( x C_ A -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
59 |
58
|
adantrd |
|- ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
60 |
59
|
a2d |
|- ( ph -> ( ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
61 |
32 60
|
syld |
|- ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
62 |
61
|
alrimdv |
|- ( ph -> ( S Fr B -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
63 |
|
dffr3 |
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
64 |
62 63
|
syl6ibr |
|- ( ph -> ( S Fr B -> R Fr A ) ) |