Step |
Hyp |
Ref |
Expression |
1 |
|
df-iso |
|- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
2 |
|
fveq2 |
|- ( c = C -> ( Inv ` c ) = ( Inv ` C ) ) |
3 |
2
|
coeq2d |
|- ( c = C -> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |
4 |
|
id |
|- ( C e. Cat -> C e. Cat ) |
5 |
|
funmpt |
|- Fun ( x e. _V |-> dom x ) |
6 |
|
fvexd |
|- ( C e. Cat -> ( Inv ` C ) e. _V ) |
7 |
|
cofunexg |
|- ( ( Fun ( x e. _V |-> dom x ) /\ ( Inv ` C ) e. _V ) -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) e. _V ) |
8 |
5 6 7
|
sylancr |
|- ( C e. Cat -> ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) e. _V ) |
9 |
1 3 4 8
|
fvmptd3 |
|- ( C e. Cat -> ( Iso ` C ) = ( ( x e. _V |-> dom x ) o. ( Inv ` C ) ) ) |