| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isohom.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | isohom.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | isohom.i |  |-  I = ( Iso ` C ) | 
						
							| 4 |  | isohom.c |  |-  ( ph -> C e. Cat ) | 
						
							| 5 |  | isohom.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | isohom.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | eqid |  |-  ( Inv ` C ) = ( Inv ` C ) | 
						
							| 8 | 1 7 4 5 6 3 | isoval |  |-  ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) | 
						
							| 9 | 1 7 4 5 6 2 | invss |  |-  ( ph -> ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) | 
						
							| 10 |  | dmss |  |-  ( ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) | 
						
							| 12 | 8 11 | eqsstrd |  |-  ( ph -> ( X I Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) | 
						
							| 13 |  | dmxpss |  |-  dom ( ( X H Y ) X. ( Y H X ) ) C_ ( X H Y ) | 
						
							| 14 | 12 13 | sstrdi |  |-  ( ph -> ( X I Y ) C_ ( X H Y ) ) |