Step |
Hyp |
Ref |
Expression |
1 |
|
dfima2 |
|- ( H " ( A i^i ( `' R " { D } ) ) ) = { y | E. x e. ( A i^i ( `' R " { D } ) ) x H y } |
2 |
|
elin |
|- ( y e. ( B i^i ( `' S " { ( H ` D ) } ) ) <-> ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) ) |
3 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
4 |
|
f1ofo |
|- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
5 |
|
forn |
|- ( H : A -onto-> B -> ran H = B ) |
6 |
5
|
eleq2d |
|- ( H : A -onto-> B -> ( y e. ran H <-> y e. B ) ) |
7 |
3 4 6
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( y e. ran H <-> y e. B ) ) |
8 |
|
f1ofn |
|- ( H : A -1-1-onto-> B -> H Fn A ) |
9 |
|
fvelrnb |
|- ( H Fn A -> ( y e. ran H <-> E. x e. A ( H ` x ) = y ) ) |
10 |
3 8 9
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( y e. ran H <-> E. x e. A ( H ` x ) = y ) ) |
11 |
7 10
|
bitr3d |
|- ( H Isom R , S ( A , B ) -> ( y e. B <-> E. x e. A ( H ` x ) = y ) ) |
12 |
|
fvex |
|- ( H ` D ) e. _V |
13 |
|
vex |
|- y e. _V |
14 |
13
|
eliniseg |
|- ( ( H ` D ) e. _V -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
15 |
12 14
|
mp1i |
|- ( H Isom R , S ( A , B ) -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
16 |
11 15
|
anbi12d |
|- ( H Isom R , S ( A , B ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
17 |
16
|
adantr |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
18 |
|
elin |
|- ( x e. ( A i^i ( `' R " { D } ) ) <-> ( x e. A /\ x e. ( `' R " { D } ) ) ) |
19 |
|
vex |
|- x e. _V |
20 |
19
|
eliniseg |
|- ( D e. A -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
21 |
20
|
anbi2d |
|- ( D e. A -> ( ( x e. A /\ x e. ( `' R " { D } ) ) <-> ( x e. A /\ x R D ) ) ) |
22 |
18 21
|
syl5bb |
|- ( D e. A -> ( x e. ( A i^i ( `' R " { D } ) ) <-> ( x e. A /\ x R D ) ) ) |
23 |
22
|
anbi1d |
|- ( D e. A -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( ( x e. A /\ x R D ) /\ x H y ) ) ) |
24 |
|
anass |
|- ( ( ( x e. A /\ x R D ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) |
25 |
23 24
|
bitrdi |
|- ( D e. A -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) ) |
26 |
25
|
adantl |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( x R D /\ x H y ) ) ) ) |
27 |
|
isorel |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D <-> ( H ` x ) S ( H ` D ) ) ) |
28 |
3 8
|
syl |
|- ( H Isom R , S ( A , B ) -> H Fn A ) |
29 |
|
fnbrfvb |
|- ( ( H Fn A /\ x e. A ) -> ( ( H ` x ) = y <-> x H y ) ) |
30 |
29
|
bicomd |
|- ( ( H Fn A /\ x e. A ) -> ( x H y <-> ( H ` x ) = y ) ) |
31 |
28 30
|
sylan |
|- ( ( H Isom R , S ( A , B ) /\ x e. A ) -> ( x H y <-> ( H ` x ) = y ) ) |
32 |
31
|
adantrr |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x H y <-> ( H ` x ) = y ) ) |
33 |
27 32
|
anbi12d |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) ) ) |
34 |
|
ancom |
|- ( ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) <-> ( ( H ` x ) = y /\ ( H ` x ) S ( H ` D ) ) ) |
35 |
|
breq1 |
|- ( ( H ` x ) = y -> ( ( H ` x ) S ( H ` D ) <-> y S ( H ` D ) ) ) |
36 |
35
|
pm5.32i |
|- ( ( ( H ` x ) = y /\ ( H ` x ) S ( H ` D ) ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) |
37 |
34 36
|
bitri |
|- ( ( ( H ` x ) S ( H ` D ) /\ ( H ` x ) = y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) |
38 |
33 37
|
bitrdi |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
39 |
38
|
exp32 |
|- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) ) |
40 |
39
|
com23 |
|- ( H Isom R , S ( A , B ) -> ( D e. A -> ( x e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) ) |
41 |
40
|
imp |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( x e. A -> ( ( x R D /\ x H y ) <-> ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
42 |
41
|
pm5.32d |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. A /\ ( x R D /\ x H y ) ) <-> ( x e. A /\ ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
43 |
26 42
|
bitrd |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( x e. ( A i^i ( `' R " { D } ) ) /\ x H y ) <-> ( x e. A /\ ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) ) |
44 |
43
|
rexbidv2 |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( E. x e. ( A i^i ( `' R " { D } ) ) x H y <-> E. x e. A ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
45 |
|
r19.41v |
|- ( E. x e. A ( ( H ` x ) = y /\ y S ( H ` D ) ) <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) |
46 |
44 45
|
bitrdi |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( E. x e. ( A i^i ( `' R " { D } ) ) x H y <-> ( E. x e. A ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
47 |
17 46
|
bitr4d |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( ( y e. B /\ y e. ( `' S " { ( H ` D ) } ) ) <-> E. x e. ( A i^i ( `' R " { D } ) ) x H y ) ) |
48 |
2 47
|
syl5bb |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( y e. ( B i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. ( A i^i ( `' R " { D } ) ) x H y ) ) |
49 |
48
|
abbi2dv |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( B i^i ( `' S " { ( H ` D ) } ) ) = { y | E. x e. ( A i^i ( `' R " { D } ) ) x H y } ) |
50 |
1 49
|
eqtr4id |
|- ( ( H Isom R , S ( A , B ) /\ D e. A ) -> ( H " ( A i^i ( `' R " { D } ) ) ) = ( B i^i ( `' S " { ( H ` D ) } ) ) ) |