Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
|- ( -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) <-> E. y y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) ) |
2 |
|
vex |
|- y e. _V |
3 |
2
|
elima |
|- ( y e. ( H " C ) <-> E. x e. C x H y ) |
4 |
|
ssel |
|- ( C C_ A -> ( x e. C -> x e. A ) ) |
5 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
6 |
|
f1ofn |
|- ( H : A -1-1-onto-> B -> H Fn A ) |
7 |
|
fnbrfvb |
|- ( ( H Fn A /\ x e. A ) -> ( ( H ` x ) = y <-> x H y ) ) |
8 |
7
|
ex |
|- ( H Fn A -> ( x e. A -> ( ( H ` x ) = y <-> x H y ) ) ) |
9 |
5 6 8
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( x e. A -> ( ( H ` x ) = y <-> x H y ) ) ) |
10 |
4 9
|
syl9r |
|- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( ( H ` x ) = y <-> x H y ) ) ) ) |
11 |
10
|
imp31 |
|- ( ( ( H Isom R , S ( A , B ) /\ C C_ A ) /\ x e. C ) -> ( ( H ` x ) = y <-> x H y ) ) |
12 |
11
|
rexbidva |
|- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( E. x e. C ( H ` x ) = y <-> E. x e. C x H y ) ) |
13 |
3 12
|
bitr4id |
|- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( H " C ) <-> E. x e. C ( H ` x ) = y ) ) |
14 |
|
fvex |
|- ( H ` D ) e. _V |
15 |
2
|
eliniseg |
|- ( ( H ` D ) e. _V -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
16 |
14 15
|
mp1i |
|- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( `' S " { ( H ` D ) } ) <-> y S ( H ` D ) ) ) |
17 |
13 16
|
anbi12d |
|- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( ( y e. ( H " C ) /\ y e. ( `' S " { ( H ` D ) } ) ) <-> ( E. x e. C ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
18 |
|
elin |
|- ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> ( y e. ( H " C ) /\ y e. ( `' S " { ( H ` D ) } ) ) ) |
19 |
|
r19.41v |
|- ( E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) <-> ( E. x e. C ( H ` x ) = y /\ y S ( H ` D ) ) ) |
20 |
17 18 19
|
3bitr4g |
|- ( ( H Isom R , S ( A , B ) /\ C C_ A ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
21 |
20
|
adantrr |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) ) ) |
22 |
|
breq1 |
|- ( ( H ` x ) = y -> ( ( H ` x ) S ( H ` D ) <-> y S ( H ` D ) ) ) |
23 |
22
|
biimpar |
|- ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> ( H ` x ) S ( H ` D ) ) |
24 |
|
vex |
|- x e. _V |
25 |
24
|
eliniseg |
|- ( D e. A -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
26 |
25
|
ad2antll |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) <-> x R D ) ) |
27 |
|
isorel |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D <-> ( H ` x ) S ( H ` D ) ) ) |
28 |
26 27
|
bitrd |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) <-> ( H ` x ) S ( H ` D ) ) ) |
29 |
23 28
|
syl5ibr |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) |
30 |
29
|
exp32 |
|- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) |
31 |
4 30
|
syl9r |
|- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( D e. A -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) ) |
32 |
31
|
com34 |
|- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( D e. A -> ( x e. C -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) ) ) |
33 |
32
|
imp32 |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( ( ( H ` x ) = y /\ y S ( H ` D ) ) -> x e. ( `' R " { D } ) ) ) ) |
34 |
33
|
reximdvai |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. x e. C ( ( H ` x ) = y /\ y S ( H ` D ) ) -> E. x e. C x e. ( `' R " { D } ) ) ) |
35 |
21 34
|
sylbid |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> E. x e. C x e. ( `' R " { D } ) ) ) |
36 |
|
elin |
|- ( x e. ( C i^i ( `' R " { D } ) ) <-> ( x e. C /\ x e. ( `' R " { D } ) ) ) |
37 |
36
|
exbii |
|- ( E. x x e. ( C i^i ( `' R " { D } ) ) <-> E. x ( x e. C /\ x e. ( `' R " { D } ) ) ) |
38 |
|
neq0 |
|- ( -. ( C i^i ( `' R " { D } ) ) = (/) <-> E. x x e. ( C i^i ( `' R " { D } ) ) ) |
39 |
|
df-rex |
|- ( E. x e. C x e. ( `' R " { D } ) <-> E. x ( x e. C /\ x e. ( `' R " { D } ) ) ) |
40 |
37 38 39
|
3bitr4i |
|- ( -. ( C i^i ( `' R " { D } ) ) = (/) <-> E. x e. C x e. ( `' R " { D } ) ) |
41 |
35 40
|
syl6ibr |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
42 |
41
|
exlimdv |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. y y e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
43 |
1 42
|
syl5bi |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) -> -. ( C i^i ( `' R " { D } ) ) = (/) ) ) |
44 |
43
|
con4d |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( C i^i ( `' R " { D } ) ) = (/) -> ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
45 |
5 6
|
syl |
|- ( H Isom R , S ( A , B ) -> H Fn A ) |
46 |
|
fnfvima |
|- ( ( H Fn A /\ C C_ A /\ x e. C ) -> ( H ` x ) e. ( H " C ) ) |
47 |
46
|
3expia |
|- ( ( H Fn A /\ C C_ A ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
48 |
47
|
adantrr |
|- ( ( H Fn A /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
49 |
45 48
|
sylan |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( H ` x ) e. ( H " C ) ) ) |
50 |
49
|
adantrd |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( H " C ) ) ) |
51 |
27
|
biimpd |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) S ( H ` D ) ) ) |
52 |
|
fvex |
|- ( H ` x ) e. _V |
53 |
52
|
eliniseg |
|- ( ( H ` D ) e. _V -> ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) ) |
54 |
14 53
|
ax-mp |
|- ( ( H ` x ) e. ( `' S " { ( H ` D ) } ) <-> ( H ` x ) S ( H ` D ) ) |
55 |
51 54
|
syl6ibr |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x R D -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
56 |
26 55
|
sylbid |
|- ( ( H Isom R , S ( A , B ) /\ ( x e. A /\ D e. A ) ) -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
57 |
56
|
exp32 |
|- ( H Isom R , S ( A , B ) -> ( x e. A -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) |
58 |
4 57
|
syl9r |
|- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( x e. C -> ( D e. A -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
59 |
58
|
com34 |
|- ( H Isom R , S ( A , B ) -> ( C C_ A -> ( D e. A -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) ) ) |
60 |
59
|
imp32 |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. C -> ( x e. ( `' R " { D } ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
61 |
60
|
impd |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
62 |
50 61
|
jcad |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( x e. C /\ x e. ( `' R " { D } ) ) -> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) ) |
63 |
|
elin |
|- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) <-> ( ( H ` x ) e. ( H " C ) /\ ( H ` x ) e. ( `' S " { ( H ` D ) } ) ) ) |
64 |
62 36 63
|
3imtr4g |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) ) ) |
65 |
|
n0i |
|- ( ( H ` x ) e. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) |
66 |
64 65
|
syl6 |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
67 |
66
|
exlimdv |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( E. x x e. ( C i^i ( `' R " { D } ) ) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
68 |
38 67
|
syl5bi |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( -. ( C i^i ( `' R " { D } ) ) = (/) -> -. ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |
69 |
44 68
|
impcon4bid |
|- ( ( H Isom R , S ( A , B ) /\ ( C C_ A /\ D e. A ) ) -> ( ( C i^i ( `' R " { D } ) ) = (/) <-> ( ( H " C ) i^i ( `' S " { ( H ` D ) } ) ) = (/) ) ) |