| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isoml.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							isoml.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							isoml.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							isoml.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							isoml.o | 
							 |-  ._|_ = ( oc ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = K -> ( Base ` k ) = ( Base ` K ) )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eqtr4di | 
							 |-  ( k = K -> ( Base ` k ) = B )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = K -> ( le ` k ) = ( le ` K ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							 |-  ( k = K -> ( le ` k ) = .<_ )  | 
						
						
							| 10 | 
							
								9
							 | 
							breqd | 
							 |-  ( k = K -> ( x ( le ` k ) y <-> x .<_ y ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = K -> ( join ` k ) = ( join ` K ) )  | 
						
						
							| 12 | 
							
								11 3
							 | 
							eqtr4di | 
							 |-  ( k = K -> ( join ` k ) = .\/ )  | 
						
						
							| 13 | 
							
								
							 | 
							eqidd | 
							 |-  ( k = K -> x = x )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = K -> ( meet ` k ) = ( meet ` K ) )  | 
						
						
							| 15 | 
							
								14 4
							 | 
							eqtr4di | 
							 |-  ( k = K -> ( meet ` k ) = ./\ )  | 
						
						
							| 16 | 
							
								
							 | 
							eqidd | 
							 |-  ( k = K -> y = y )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = K -> ( oc ` k ) = ( oc ` K ) )  | 
						
						
							| 18 | 
							
								17 5
							 | 
							eqtr4di | 
							 |-  ( k = K -> ( oc ` k ) = ._|_ )  | 
						
						
							| 19 | 
							
								18
							 | 
							fveq1d | 
							 |-  ( k = K -> ( ( oc ` k ) ` x ) = ( ._|_ ` x ) )  | 
						
						
							| 20 | 
							
								15 16 19
							 | 
							oveq123d | 
							 |-  ( k = K -> ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) = ( y ./\ ( ._|_ ` x ) ) )  | 
						
						
							| 21 | 
							
								12 13 20
							 | 
							oveq123d | 
							 |-  ( k = K -> ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqeq2d | 
							 |-  ( k = K -> ( y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) <-> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) )  | 
						
						
							| 23 | 
							
								10 22
							 | 
							imbi12d | 
							 |-  ( k = K -> ( ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) )  | 
						
						
							| 24 | 
							
								7 23
							 | 
							raleqbidv | 
							 |-  ( k = K -> ( A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) )  | 
						
						
							| 25 | 
							
								7 24
							 | 
							raleqbidv | 
							 |-  ( k = K -> ( A. x e. ( Base ` k ) A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) <-> A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							df-oml | 
							 |-  OML = { k e. OL | A. x e. ( Base ` k ) A. y e. ( Base ` k ) ( x ( le ` k ) y -> y = ( x ( join ` k ) ( y ( meet ` k ) ( ( oc ` k ) ` x ) ) ) ) } | 
						
						
							| 27 | 
							
								25 26
							 | 
							elrab2 | 
							 |-  ( K e. OML <-> ( K e. OL /\ A. x e. B A. y e. B ( x .<_ y -> y = ( x .\/ ( y ./\ ( ._|_ ` x ) ) ) ) ) )  |