Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
|- X = U. J |
2 |
|
difss |
|- ( X \ S ) C_ X |
3 |
1
|
iscld2 |
|- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( X \ S ) e. ( Clsd ` J ) <-> ( X \ ( X \ S ) ) e. J ) ) |
4 |
2 3
|
mpan2 |
|- ( J e. Top -> ( ( X \ S ) e. ( Clsd ` J ) <-> ( X \ ( X \ S ) ) e. J ) ) |
5 |
|
dfss4 |
|- ( S C_ X <-> ( X \ ( X \ S ) ) = S ) |
6 |
5
|
biimpi |
|- ( S C_ X -> ( X \ ( X \ S ) ) = S ) |
7 |
6
|
eleq1d |
|- ( S C_ X -> ( ( X \ ( X \ S ) ) e. J <-> S e. J ) ) |
8 |
4 7
|
sylan9bb |
|- ( ( J e. Top /\ S C_ X ) -> ( ( X \ S ) e. ( Clsd ` J ) <-> S e. J ) ) |
9 |
8
|
bicomd |
|- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( X \ S ) e. ( Clsd ` J ) ) ) |