Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
1
|
ntrval |
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) ) |
3 |
|
inss2 |
|- ( J i^i ~P S ) C_ ~P S |
4 |
3
|
unissi |
|- U. ( J i^i ~P S ) C_ U. ~P S |
5 |
|
unipw |
|- U. ~P S = S |
6 |
4 5
|
sseqtri |
|- U. ( J i^i ~P S ) C_ S |
7 |
6
|
a1i |
|- ( S e. J -> U. ( J i^i ~P S ) C_ S ) |
8 |
|
id |
|- ( S e. J -> S e. J ) |
9 |
|
pwidg |
|- ( S e. J -> S e. ~P S ) |
10 |
8 9
|
elind |
|- ( S e. J -> S e. ( J i^i ~P S ) ) |
11 |
|
elssuni |
|- ( S e. ( J i^i ~P S ) -> S C_ U. ( J i^i ~P S ) ) |
12 |
10 11
|
syl |
|- ( S e. J -> S C_ U. ( J i^i ~P S ) ) |
13 |
7 12
|
eqssd |
|- ( S e. J -> U. ( J i^i ~P S ) = S ) |
14 |
2 13
|
sylan9eq |
|- ( ( ( J e. Top /\ S C_ X ) /\ S e. J ) -> ( ( int ` J ) ` S ) = S ) |
15 |
14
|
ex |
|- ( ( J e. Top /\ S C_ X ) -> ( S e. J -> ( ( int ` J ) ` S ) = S ) ) |
16 |
1
|
ntropn |
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
17 |
|
eleq1 |
|- ( ( ( int ` J ) ` S ) = S -> ( ( ( int ` J ) ` S ) e. J <-> S e. J ) ) |
18 |
16 17
|
syl5ibcom |
|- ( ( J e. Top /\ S C_ X ) -> ( ( ( int ` J ) ` S ) = S -> S e. J ) ) |
19 |
15 18
|
impbid |
|- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( ( int ` J ) ` S ) = S ) ) |