Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isopn3i | |- ( ( J e. Top /\ S e. J ) -> ( ( int ` J ) ` S ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( J e. Top /\ S e. J ) -> S e. J ) |
|
| 2 | elssuni | |- ( S e. J -> S C_ U. J ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | 3 | isopn3 | |- ( ( J e. Top /\ S C_ U. J ) -> ( S e. J <-> ( ( int ` J ) ` S ) = S ) ) |
| 5 | 2 4 | sylan2 | |- ( ( J e. Top /\ S e. J ) -> ( S e. J <-> ( ( int ` J ) ` S ) = S ) ) |
| 6 | 1 5 | mpbid | |- ( ( J e. Top /\ S e. J ) -> ( ( int ` J ) ` S ) = S ) |