Description: An isomorphism preserves the property of being a partial order. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | isopo | |- ( H Isom R , S ( A , B ) -> ( R Po A <-> S Po B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
2 | isopolem | |- ( `' H Isom S , R ( B , A ) -> ( R Po A -> S Po B ) ) |
|
3 | 1 2 | syl | |- ( H Isom R , S ( A , B ) -> ( R Po A -> S Po B ) ) |
4 | isopolem | |- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |
|
5 | 3 4 | impbid | |- ( H Isom R , S ( A , B ) -> ( R Po A <-> S Po B ) ) |