Step |
Hyp |
Ref |
Expression |
1 |
|
isocnv |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
2 |
|
isores2 |
|- ( `' H Isom S , R ( B , A ) <-> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
3 |
1 2
|
sylib |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
4 |
|
isocnv |
|- ( `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
5 |
3 4
|
syl |
|- ( H Isom R , S ( A , B ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
6 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
7 |
|
f1orel |
|- ( H : A -1-1-onto-> B -> Rel H ) |
8 |
|
dfrel2 |
|- ( Rel H <-> `' `' H = H ) |
9 |
|
isoeq1 |
|- ( `' `' H = H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
10 |
8 9
|
sylbi |
|- ( Rel H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
11 |
6 7 10
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
12 |
5 11
|
mpbid |
|- ( H Isom R , S ( A , B ) -> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
13 |
|
isocnv |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
14 |
13 2
|
sylibr |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
15 |
|
isocnv |
|- ( `' H Isom S , R ( B , A ) -> `' `' H Isom R , S ( A , B ) ) |
16 |
14 15
|
syl |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' `' H Isom R , S ( A , B ) ) |
17 |
|
isof1o |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H : A -1-1-onto-> B ) |
18 |
|
isoeq1 |
|- ( `' `' H = H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
19 |
8 18
|
sylbi |
|- ( Rel H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
20 |
17 7 19
|
3syl |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
21 |
16 20
|
mpbid |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H Isom R , S ( A , B ) ) |
22 |
12 21
|
impbii |
|- ( H Isom R , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |