| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isocnv |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
| 2 |
|
isores2 |
|- ( `' H Isom S , R ( B , A ) <-> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
| 3 |
1 2
|
sylib |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
| 4 |
|
isocnv |
|- ( `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| 5 |
3 4
|
syl |
|- ( H Isom R , S ( A , B ) -> `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| 6 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
| 7 |
|
f1orel |
|- ( H : A -1-1-onto-> B -> Rel H ) |
| 8 |
|
dfrel2 |
|- ( Rel H <-> `' `' H = H ) |
| 9 |
|
isoeq1 |
|- ( `' `' H = H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
| 10 |
8 9
|
sylbi |
|- ( Rel H -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
| 11 |
6 7 10
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( `' `' H Isom ( R i^i ( A X. A ) ) , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) ) |
| 12 |
5 11
|
mpbid |
|- ( H Isom R , S ( A , B ) -> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |
| 13 |
|
isocnv |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , ( R i^i ( A X. A ) ) ( B , A ) ) |
| 14 |
13 2
|
sylibr |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
| 15 |
|
isocnv |
|- ( `' H Isom S , R ( B , A ) -> `' `' H Isom R , S ( A , B ) ) |
| 16 |
14 15
|
syl |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> `' `' H Isom R , S ( A , B ) ) |
| 17 |
|
isof1o |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H : A -1-1-onto-> B ) |
| 18 |
|
isoeq1 |
|- ( `' `' H = H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
| 19 |
8 18
|
sylbi |
|- ( Rel H -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
| 20 |
17 7 19
|
3syl |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> ( `' `' H Isom R , S ( A , B ) <-> H Isom R , S ( A , B ) ) ) |
| 21 |
16 20
|
mpbid |
|- ( H Isom ( R i^i ( A X. A ) ) , S ( A , B ) -> H Isom R , S ( A , B ) ) |
| 22 |
12 21
|
impbii |
|- ( H Isom R , S ( A , B ) <-> H Isom ( R i^i ( A X. A ) ) , S ( A , B ) ) |