Step |
Hyp |
Ref |
Expression |
1 |
|
isosctrlem3.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
simp11 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> A e. CC ) |
3 |
|
simp13 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> C e. CC ) |
4 |
2 3
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( A - C ) e. CC ) |
5 |
|
simp12 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> B e. CC ) |
6 |
5 3
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( B - C ) e. CC ) |
7 |
|
simp21 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> A =/= C ) |
8 |
2 3 7
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( A - C ) =/= 0 ) |
9 |
|
simp22 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> B =/= C ) |
10 |
5 3 9
|
subne0d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( B - C ) =/= 0 ) |
11 |
|
simp23 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> A =/= B ) |
12 |
|
subcan2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
14 |
13
|
necon3bid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( A - C ) =/= ( B - C ) <-> A =/= B ) ) |
15 |
11 14
|
mpbird |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( A - C ) =/= ( B - C ) ) |
16 |
|
simp3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) |
17 |
1
|
isosctrlem3 |
|- ( ( ( ( A - C ) e. CC /\ ( B - C ) e. CC ) /\ ( ( A - C ) =/= 0 /\ ( B - C ) =/= 0 /\ ( A - C ) =/= ( B - C ) ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( -u ( A - C ) F ( ( B - C ) - ( A - C ) ) ) = ( ( ( A - C ) - ( B - C ) ) F -u ( B - C ) ) ) |
18 |
4 6 8 10 15 16 17
|
syl231anc |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( -u ( A - C ) F ( ( B - C ) - ( A - C ) ) ) = ( ( ( A - C ) - ( B - C ) ) F -u ( B - C ) ) ) |
19 |
2 3
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> -u ( A - C ) = ( C - A ) ) |
20 |
5 2 3
|
nnncan2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( B - C ) - ( A - C ) ) = ( B - A ) ) |
21 |
19 20
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( -u ( A - C ) F ( ( B - C ) - ( A - C ) ) ) = ( ( C - A ) F ( B - A ) ) ) |
22 |
2 5 3
|
nnncan2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( A - C ) - ( B - C ) ) = ( A - B ) ) |
23 |
5 3
|
negsubdi2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> -u ( B - C ) = ( C - B ) ) |
24 |
22 23
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( ( A - C ) - ( B - C ) ) F -u ( B - C ) ) = ( ( A - B ) F ( C - B ) ) ) |
25 |
18 21 24
|
3eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( A =/= C /\ B =/= C /\ A =/= B ) /\ ( abs ` ( A - C ) ) = ( abs ` ( B - C ) ) ) -> ( ( C - A ) F ( B - A ) ) = ( ( A - B ) F ( C - B ) ) ) |