Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
3 |
1 2
|
mpan |
|- ( A e. CC -> ( 1 - A ) e. CC ) |
4 |
3
|
adantr |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) e. CC ) |
5 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
6 |
5
|
notbid |
|- ( ( 1 e. CC /\ A e. CC ) -> ( -. ( 1 - A ) = 0 <-> -. 1 = A ) ) |
7 |
1 6
|
mpan |
|- ( A e. CC -> ( -. ( 1 - A ) = 0 <-> -. 1 = A ) ) |
8 |
7
|
biimpar |
|- ( ( A e. CC /\ -. 1 = A ) -> -. ( 1 - A ) = 0 ) |
9 |
8
|
neqned |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
10 |
4 9
|
logcld |
|- ( ( A e. CC /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) e. CC ) |
11 |
10
|
imcld |
|- ( ( A e. CC /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
12 |
11
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
13 |
3
|
3ad2ant1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) e. CC ) |
14 |
9
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
15 |
|
releabs |
|- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |
16 |
15
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ ( abs ` A ) ) |
17 |
|
breq2 |
|- ( ( abs ` A ) = 1 -> ( ( Re ` A ) <_ ( abs ` A ) <-> ( Re ` A ) <_ 1 ) ) |
18 |
17
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( Re ` A ) <_ ( abs ` A ) <-> ( Re ` A ) <_ 1 ) ) |
19 |
16 18
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` A ) <_ 1 ) |
20 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
21 |
20
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
22 |
21
|
subidd |
|- ( A e. CC -> ( ( Re ` A ) - ( Re ` A ) ) = 0 ) |
23 |
22
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) = 0 ) |
24 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> A e. CC ) |
25 |
24
|
recld |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> ( Re ` A ) e. RR ) |
26 |
|
1red |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> 1 e. RR ) |
27 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> ( Re ` A ) <_ 1 ) |
28 |
25 26 25 27
|
lesub1dd |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> ( ( Re ` A ) - ( Re ` A ) ) <_ ( 1 - ( Re ` A ) ) ) |
29 |
23 28
|
eqbrtrrd |
|- ( ( A e. CC /\ ( Re ` A ) <_ 1 ) -> 0 <_ ( 1 - ( Re ` A ) ) ) |
30 |
19 29
|
syldan |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( 1 - ( Re ` A ) ) ) |
31 |
|
resub |
|- ( ( 1 e. CC /\ A e. CC ) -> ( Re ` ( 1 - A ) ) = ( ( Re ` 1 ) - ( Re ` A ) ) ) |
32 |
|
re1 |
|- ( Re ` 1 ) = 1 |
33 |
32
|
oveq1i |
|- ( ( Re ` 1 ) - ( Re ` A ) ) = ( 1 - ( Re ` A ) ) |
34 |
31 33
|
eqtrdi |
|- ( ( 1 e. CC /\ A e. CC ) -> ( Re ` ( 1 - A ) ) = ( 1 - ( Re ` A ) ) ) |
35 |
1 34
|
mpan |
|- ( A e. CC -> ( Re ` ( 1 - A ) ) = ( 1 - ( Re ` A ) ) ) |
36 |
35
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( Re ` ( 1 - A ) ) = ( 1 - ( Re ` A ) ) ) |
37 |
30 36
|
breqtrrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 0 <_ ( Re ` ( 1 - A ) ) ) |
38 |
37
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> 0 <_ ( Re ` ( 1 - A ) ) ) |
39 |
|
neghalfpirx |
|- -u ( _pi / 2 ) e. RR* |
40 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
41 |
40
|
rexri |
|- ( _pi / 2 ) e. RR* |
42 |
|
argrege0 |
|- ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
43 |
|
iccleub |
|- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ ( Im ` ( log ` ( 1 - A ) ) ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) ) |
44 |
39 41 42 43
|
mp3an12i |
|- ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ 0 <_ ( Re ` ( 1 - A ) ) ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) ) |
45 |
13 14 38 44
|
syl3anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) ) |
46 |
|
pirp |
|- _pi e. RR+ |
47 |
|
rphalflt |
|- ( _pi e. RR+ -> ( _pi / 2 ) < _pi ) |
48 |
46 47
|
ax-mp |
|- ( _pi / 2 ) < _pi |
49 |
45 48
|
jctir |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) ) |
50 |
|
pire |
|- _pi e. RR |
51 |
50
|
a1i |
|- ( ( A e. CC /\ -. 1 = A ) -> _pi e. RR ) |
52 |
51
|
rehalfcld |
|- ( ( A e. CC /\ -. 1 = A ) -> ( _pi / 2 ) e. RR ) |
53 |
|
lelttr |
|- ( ( ( Im ` ( log ` ( 1 - A ) ) ) e. RR /\ ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( ( ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi ) ) |
54 |
11 52 51 53
|
syl3anc |
|- ( ( A e. CC /\ -. 1 = A ) -> ( ( ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi ) ) |
55 |
54
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( ( Im ` ( log ` ( 1 - A ) ) ) <_ ( _pi / 2 ) /\ ( _pi / 2 ) < _pi ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi ) ) |
56 |
49 55
|
mpd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) < _pi ) |
57 |
12 56
|
ltned |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) |