Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. CC ) |
2 |
|
simpl1 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> A e. CC ) |
3 |
1 2
|
negsubd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 + -u A ) = ( 1 - A ) ) |
4 |
|
1rp |
|- 1 e. RR+ |
5 |
4
|
a1i |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. RR+ ) |
6 |
|
simpl3 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -. 1 = A ) |
7 |
|
simpl2 |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( abs ` A ) = 1 ) |
8 |
1 2 1
|
sub32d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) = ( ( 1 - 1 ) - A ) ) |
9 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
10 |
9
|
oveq1i |
|- ( ( 1 - 1 ) - A ) = ( 0 - A ) |
11 |
|
df-neg |
|- -u A = ( 0 - A ) |
12 |
10 11
|
eqtr4i |
|- ( ( 1 - 1 ) - A ) = -u A |
13 |
8 12
|
eqtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) = -u A ) |
14 |
|
1cnd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> 1 e. CC ) |
15 |
|
simp1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> A e. CC ) |
16 |
14 15
|
subcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) e. CC ) |
17 |
16
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. CC ) |
18 |
|
ax-1cn |
|- 1 e. CC |
19 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
20 |
18 19
|
mpan |
|- ( A e. CC -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
21 |
20
|
biimpd |
|- ( A e. CC -> ( ( 1 - A ) = 0 -> 1 = A ) ) |
22 |
21
|
con3dimp |
|- ( ( A e. CC /\ -. 1 = A ) -> -. ( 1 - A ) = 0 ) |
23 |
22
|
neqned |
|- ( ( A e. CC /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
24 |
23
|
3adant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - A ) =/= 0 ) |
25 |
24
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) =/= 0 ) |
26 |
17 25
|
recrecd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 / ( 1 - A ) ) ) = ( 1 - A ) ) |
27 |
14 16 24
|
div2negd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) |
28 |
27
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u 1 / -u ( 1 - A ) ) = ( 1 / ( 1 - A ) ) ) |
29 |
15
|
negcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u A e. CC ) |
30 |
29 16 24
|
cjdivd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( ( * ` -u A ) / ( * ` ( 1 - A ) ) ) ) |
31 |
15
|
cjnegd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` -u A ) = -u ( * ` A ) ) |
32 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
33 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
34 |
32 33
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
35 |
|
eqtr2 |
|- ( ( ( abs ` A ) = 1 /\ ( abs ` A ) = 0 ) -> 1 = 0 ) |
36 |
34 35
|
sylan2 |
|- ( ( ( abs ` A ) = 1 /\ A = 0 ) -> 1 = 0 ) |
37 |
|
ax-1ne0 |
|- 1 =/= 0 |
38 |
|
neneq |
|- ( 1 =/= 0 -> -. 1 = 0 ) |
39 |
37 38
|
mp1i |
|- ( ( ( abs ` A ) = 1 /\ A = 0 ) -> -. 1 = 0 ) |
40 |
36 39
|
pm2.65da |
|- ( ( abs ` A ) = 1 -> -. A = 0 ) |
41 |
40
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> -. A = 0 ) |
42 |
|
df-ne |
|- ( A =/= 0 <-> -. A = 0 ) |
43 |
|
oveq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
44 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
45 |
43 44
|
eqtrdi |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) ^ 2 ) = 1 ) |
46 |
45
|
adantl |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) |
47 |
|
absvalsq |
|- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
48 |
47
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
49 |
46 48
|
eqtr3d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> 1 = ( A x. ( * ` A ) ) ) |
50 |
49
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> 1 = ( A x. ( * ` A ) ) ) |
51 |
50
|
oveq1d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( 1 / A ) = ( ( A x. ( * ` A ) ) / A ) ) |
52 |
|
simp1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> A e. CC ) |
53 |
52
|
cjcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
54 |
|
simp3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> A =/= 0 ) |
55 |
53 52 54
|
divcan3d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( ( A x. ( * ` A ) ) / A ) = ( * ` A ) ) |
56 |
51 55
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ A =/= 0 ) -> ( 1 / A ) = ( * ` A ) ) |
57 |
42 56
|
syl3an3br |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. A = 0 ) -> ( 1 / A ) = ( * ` A ) ) |
58 |
41 57
|
mpd3an3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 / A ) = ( * ` A ) ) |
59 |
58
|
eqcomd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` A ) = ( 1 / A ) ) |
60 |
59
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` A ) = ( 1 / A ) ) |
61 |
60
|
negeqd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u ( * ` A ) = -u ( 1 / A ) ) |
62 |
31 61
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` -u A ) = -u ( 1 / A ) ) |
63 |
62
|
oveq1d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( * ` -u A ) / ( * ` ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( * ` ( 1 - A ) ) ) ) |
64 |
|
cjsub |
|- ( ( 1 e. CC /\ A e. CC ) -> ( * ` ( 1 - A ) ) = ( ( * ` 1 ) - ( * ` A ) ) ) |
65 |
18 64
|
mpan |
|- ( A e. CC -> ( * ` ( 1 - A ) ) = ( ( * ` 1 ) - ( * ` A ) ) ) |
66 |
|
1red |
|- ( A e. CC -> 1 e. RR ) |
67 |
66
|
cjred |
|- ( A e. CC -> ( * ` 1 ) = 1 ) |
68 |
67
|
oveq1d |
|- ( A e. CC -> ( ( * ` 1 ) - ( * ` A ) ) = ( 1 - ( * ` A ) ) ) |
69 |
65 68
|
eqtrd |
|- ( A e. CC -> ( * ` ( 1 - A ) ) = ( 1 - ( * ` A ) ) ) |
70 |
69
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` ( 1 - A ) ) = ( 1 - ( * ` A ) ) ) |
71 |
59
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( 1 - ( * ` A ) ) = ( 1 - ( 1 / A ) ) ) |
72 |
70 71
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 ) -> ( * ` ( 1 - A ) ) = ( 1 - ( 1 / A ) ) ) |
73 |
72
|
3adant3 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( 1 - A ) ) = ( 1 - ( 1 / A ) ) ) |
74 |
73
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( * ` ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
75 |
30 63 74
|
3eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
76 |
40
|
3ad2ant2 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -. A = 0 ) |
77 |
76
|
neqned |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> A =/= 0 ) |
78 |
|
1cnd |
|- ( ( A e. CC /\ A =/= 0 ) -> 1 e. CC ) |
79 |
|
simpl |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
80 |
|
simpr |
|- ( ( A e. CC /\ A =/= 0 ) -> A =/= 0 ) |
81 |
78 79 80
|
divnegd |
|- ( ( A e. CC /\ A =/= 0 ) -> -u ( 1 / A ) = ( -u 1 / A ) ) |
82 |
81
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
83 |
15 77 82
|
syl2anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
84 |
14
|
negcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u 1 e. CC ) |
85 |
84 15 77
|
divcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / A ) e. CC ) |
86 |
15 77
|
reccld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / A ) e. CC ) |
87 |
14 86
|
subcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - ( 1 / A ) ) e. CC ) |
88 |
16 24
|
cjne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( 1 - A ) ) =/= 0 ) |
89 |
73 88
|
eqnetrrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 - ( 1 / A ) ) =/= 0 ) |
90 |
85 87 15 89 77
|
divcan5d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. ( -u 1 / A ) ) / ( A x. ( 1 - ( 1 / A ) ) ) ) = ( ( -u 1 / A ) / ( 1 - ( 1 / A ) ) ) ) |
91 |
84 15 77
|
divcan2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( -u 1 / A ) ) = -u 1 ) |
92 |
15 14 86
|
subdid |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 - ( 1 / A ) ) ) = ( ( A x. 1 ) - ( A x. ( 1 / A ) ) ) ) |
93 |
15
|
mulid1d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. 1 ) = A ) |
94 |
15 77
|
recidd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 / A ) ) = 1 ) |
95 |
93 94
|
oveq12d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. 1 ) - ( A x. ( 1 / A ) ) ) = ( A - 1 ) ) |
96 |
92 95
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A x. ( 1 - ( 1 / A ) ) ) = ( A - 1 ) ) |
97 |
91 96
|
oveq12d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( ( A x. ( -u 1 / A ) ) / ( A x. ( 1 - ( 1 / A ) ) ) ) = ( -u 1 / ( A - 1 ) ) ) |
98 |
83 90 97
|
3eqtr2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u ( 1 / A ) / ( 1 - ( 1 / A ) ) ) = ( -u 1 / ( A - 1 ) ) ) |
99 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
100 |
99
|
negnegd |
|- ( ( A e. CC /\ 1 e. CC ) -> -u -u ( A - 1 ) = ( A - 1 ) ) |
101 |
|
negsubdi2 |
|- ( ( A e. CC /\ 1 e. CC ) -> -u ( A - 1 ) = ( 1 - A ) ) |
102 |
101
|
negeqd |
|- ( ( A e. CC /\ 1 e. CC ) -> -u -u ( A - 1 ) = -u ( 1 - A ) ) |
103 |
100 102
|
eqtr3d |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) = -u ( 1 - A ) ) |
104 |
15 14 103
|
syl2anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( A - 1 ) = -u ( 1 - A ) ) |
105 |
104
|
oveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u 1 / ( A - 1 ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
106 |
75 98 105
|
3eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
107 |
106
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u 1 / -u ( 1 - A ) ) ) |
108 |
29 16 24
|
divcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u A / ( 1 - A ) ) e. CC ) |
109 |
108
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. CC ) |
110 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) |
111 |
109 110
|
reim0bd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. RR ) |
112 |
111
|
cjred |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) = ( -u A / ( 1 - A ) ) ) |
113 |
112 111
|
eqeltrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( * ` ( -u A / ( 1 - A ) ) ) e. RR ) |
114 |
107 113
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u 1 / -u ( 1 - A ) ) e. RR ) |
115 |
28 114
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 - A ) ) e. RR ) |
116 |
16 24
|
recne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
117 |
116
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
118 |
115 117
|
rereccld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 / ( 1 / ( 1 - A ) ) ) e. RR ) |
119 |
26 118
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. RR ) |
120 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 e. RR ) |
121 |
119 120
|
resubcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( 1 - A ) - 1 ) e. RR ) |
122 |
13 121
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -u A e. RR ) |
123 |
2 122
|
negrebd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> A e. RR ) |
124 |
123
|
absord |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
125 |
|
eqeq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = A <-> 1 = A ) ) |
126 |
125
|
biimpd |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = A -> 1 = A ) ) |
127 |
|
eqeq1 |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = -u A <-> 1 = -u A ) ) |
128 |
127
|
biimpd |
|- ( ( abs ` A ) = 1 -> ( ( abs ` A ) = -u A -> 1 = -u A ) ) |
129 |
126 128
|
orim12d |
|- ( ( abs ` A ) = 1 -> ( ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) -> ( 1 = A \/ 1 = -u A ) ) ) |
130 |
7 124 129
|
sylc |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 = A \/ 1 = -u A ) ) |
131 |
130
|
ord |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -. 1 = A -> 1 = -u A ) ) |
132 |
6 131
|
mpd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> 1 = -u A ) |
133 |
132 5
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> -u A e. RR+ ) |
134 |
5 133
|
rpaddcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 + -u A ) e. RR+ ) |
135 |
3 134
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( 1 - A ) e. RR+ ) |
136 |
135
|
relogcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( log ` ( 1 - A ) ) e. RR ) |
137 |
136
|
reim0d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = 0 ) |
138 |
133 135
|
rpdivcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( -u A / ( 1 - A ) ) e. RR+ ) |
139 |
138
|
relogcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( log ` ( -u A / ( 1 - A ) ) ) e. RR ) |
140 |
139
|
reim0d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) = 0 ) |
141 |
137 140
|
eqtr4d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) = 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
142 |
16 24
|
logcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) e. CC ) |
143 |
142
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( 1 - A ) ) e. CC ) |
144 |
143
|
imcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. RR ) |
145 |
144
|
recnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) e. CC ) |
146 |
108
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( -u A / ( 1 - A ) ) e. CC ) |
147 |
15 77
|
negne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u A =/= 0 ) |
148 |
29 16 147 24
|
divne0d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( -u A / ( 1 - A ) ) =/= 0 ) |
149 |
148
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( -u A / ( 1 - A ) ) =/= 0 ) |
150 |
146 149
|
logcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( -u A / ( 1 - A ) ) ) e. CC ) |
151 |
150
|
imcld |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) e. RR ) |
152 |
151
|
recnd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) e. CC ) |
153 |
106
|
fveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( log ` ( -u 1 / -u ( 1 - A ) ) ) ) |
154 |
153
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( log ` ( -u 1 / -u ( 1 - A ) ) ) ) |
155 |
|
logcj |
|- ( ( ( -u A / ( 1 - A ) ) e. CC /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
156 |
108 155
|
sylan |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( * ` ( -u A / ( 1 - A ) ) ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
157 |
16 24
|
reccld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( 1 / ( 1 - A ) ) e. CC ) |
158 |
157 116
|
logcld |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
159 |
158
|
negnegd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u -u ( log ` ( 1 / ( 1 - A ) ) ) = ( log ` ( 1 / ( 1 - A ) ) ) ) |
160 |
|
isosctrlem1 |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) |
161 |
|
logrec |
|- ( ( ( 1 - A ) e. CC /\ ( 1 - A ) =/= 0 /\ ( Im ` ( log ` ( 1 - A ) ) ) =/= _pi ) -> ( log ` ( 1 - A ) ) = -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
162 |
16 24 160 161
|
syl3anc |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( 1 - A ) ) = -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
163 |
162
|
negeqd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> -u ( log ` ( 1 - A ) ) = -u -u ( log ` ( 1 / ( 1 - A ) ) ) ) |
164 |
27
|
fveq2d |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = ( log ` ( 1 / ( 1 - A ) ) ) ) |
165 |
159 163 164
|
3eqtr4rd |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = -u ( log ` ( 1 - A ) ) ) |
166 |
165
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( log ` ( -u 1 / -u ( 1 - A ) ) ) = -u ( log ` ( 1 - A ) ) ) |
167 |
154 156 166
|
3eqtr3rd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> -u ( log ` ( 1 - A ) ) = ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
168 |
167
|
fveq2d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` -u ( log ` ( 1 - A ) ) ) = ( Im ` ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) ) |
169 |
143
|
imnegd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` -u ( log ` ( 1 - A ) ) ) = -u ( Im ` ( log ` ( 1 - A ) ) ) ) |
170 |
150
|
imcjd |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( * ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) = -u ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
171 |
168 169 170
|
3eqtr3d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> -u ( Im ` ( log ` ( 1 - A ) ) ) = -u ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
172 |
145 152 171
|
neg11d |
|- ( ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) /\ ( Im ` ( -u A / ( 1 - A ) ) ) =/= 0 ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |
173 |
141 172
|
pm2.61dane |
|- ( ( A e. CC /\ ( abs ` A ) = 1 /\ -. 1 = A ) -> ( Im ` ( log ` ( 1 - A ) ) ) = ( Im ` ( log ` ( -u A / ( 1 - A ) ) ) ) ) |