| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isofrlem.1 |
|- ( ph -> H Isom R , S ( A , B ) ) |
| 2 |
|
isofrlem.2 |
|- ( ph -> ( H " x ) e. _V ) |
| 3 |
|
dfse2 |
|- ( R Se A <-> A. z e. A ( A i^i ( `' R " { z } ) ) e. _V ) |
| 4 |
3
|
biimpi |
|- ( R Se A -> A. z e. A ( A i^i ( `' R " { z } ) ) e. _V ) |
| 5 |
4
|
r19.21bi |
|- ( ( R Se A /\ z e. A ) -> ( A i^i ( `' R " { z } ) ) e. _V ) |
| 6 |
5
|
expcom |
|- ( z e. A -> ( R Se A -> ( A i^i ( `' R " { z } ) ) e. _V ) ) |
| 7 |
6
|
adantl |
|- ( ( ph /\ z e. A ) -> ( R Se A -> ( A i^i ( `' R " { z } ) ) e. _V ) ) |
| 8 |
|
imaeq2 |
|- ( x = ( A i^i ( `' R " { z } ) ) -> ( H " x ) = ( H " ( A i^i ( `' R " { z } ) ) ) ) |
| 9 |
8
|
eleq1d |
|- ( x = ( A i^i ( `' R " { z } ) ) -> ( ( H " x ) e. _V <-> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 10 |
9
|
imbi2d |
|- ( x = ( A i^i ( `' R " { z } ) ) -> ( ( ph -> ( H " x ) e. _V ) <-> ( ph -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) ) |
| 11 |
10 2
|
vtoclg |
|- ( ( A i^i ( `' R " { z } ) ) e. _V -> ( ph -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 12 |
11
|
com12 |
|- ( ph -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ z e. A ) -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 14 |
|
isoini |
|- ( ( H Isom R , S ( A , B ) /\ z e. A ) -> ( H " ( A i^i ( `' R " { z } ) ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
| 15 |
1 14
|
sylan |
|- ( ( ph /\ z e. A ) -> ( H " ( A i^i ( `' R " { z } ) ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
| 16 |
15
|
eleq1d |
|- ( ( ph /\ z e. A ) -> ( ( H " ( A i^i ( `' R " { z } ) ) ) e. _V <-> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 17 |
13 16
|
sylibd |
|- ( ( ph /\ z e. A ) -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 18 |
7 17
|
syld |
|- ( ( ph /\ z e. A ) -> ( R Se A -> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 19 |
18
|
ralrimdva |
|- ( ph -> ( R Se A -> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 20 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
| 21 |
|
f1ofn |
|- ( H : A -1-1-onto-> B -> H Fn A ) |
| 22 |
|
sneq |
|- ( y = ( H ` z ) -> { y } = { ( H ` z ) } ) |
| 23 |
22
|
imaeq2d |
|- ( y = ( H ` z ) -> ( `' S " { y } ) = ( `' S " { ( H ` z ) } ) ) |
| 24 |
23
|
ineq2d |
|- ( y = ( H ` z ) -> ( B i^i ( `' S " { y } ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
| 25 |
24
|
eleq1d |
|- ( y = ( H ` z ) -> ( ( B i^i ( `' S " { y } ) ) e. _V <-> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 26 |
25
|
ralrn |
|- ( H Fn A -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 27 |
1 20 21 26
|
4syl |
|- ( ph -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 28 |
|
f1ofo |
|- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
| 29 |
|
forn |
|- ( H : A -onto-> B -> ran H = B ) |
| 30 |
1 20 28 29
|
4syl |
|- ( ph -> ran H = B ) |
| 31 |
30
|
raleqdv |
|- ( ph -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 32 |
27 31
|
bitr3d |
|- ( ph -> ( A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 33 |
19 32
|
sylibd |
|- ( ph -> ( R Se A -> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 34 |
|
dfse2 |
|- ( S Se B <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) |
| 35 |
33 34
|
imbitrrdi |
|- ( ph -> ( R Se A -> S Se B ) ) |