Description: An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | isoso | |- ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
2 | isosolem | |- ( `' H Isom S , R ( B , A ) -> ( R Or A -> S Or B ) ) |
|
3 | 1 2 | syl | |- ( H Isom R , S ( A , B ) -> ( R Or A -> S Or B ) ) |
4 | isosolem | |- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |
|
5 | 3 4 | impbid | |- ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) ) |