Metamath Proof Explorer


Theorem isoso

Description: An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isoso
|- ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) )

Proof

Step Hyp Ref Expression
1 isocnv
 |-  ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) )
2 isosolem
 |-  ( `' H Isom S , R ( B , A ) -> ( R Or A -> S Or B ) )
3 1 2 syl
 |-  ( H Isom R , S ( A , B ) -> ( R Or A -> S Or B ) )
4 isosolem
 |-  ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) )
5 3 4 impbid
 |-  ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) )