Step |
Hyp |
Ref |
Expression |
1 |
|
isopolem |
|- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |
2 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
3 |
|
f1of |
|- ( H : A -1-1-onto-> B -> H : A --> B ) |
4 |
|
ffvelrn |
|- ( ( H : A --> B /\ c e. A ) -> ( H ` c ) e. B ) |
5 |
4
|
ex |
|- ( H : A --> B -> ( c e. A -> ( H ` c ) e. B ) ) |
6 |
|
ffvelrn |
|- ( ( H : A --> B /\ d e. A ) -> ( H ` d ) e. B ) |
7 |
6
|
ex |
|- ( H : A --> B -> ( d e. A -> ( H ` d ) e. B ) ) |
8 |
5 7
|
anim12d |
|- ( H : A --> B -> ( ( c e. A /\ d e. A ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) ) |
9 |
2 3 8
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( ( c e. A /\ d e. A ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) ) |
10 |
9
|
imp |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) e. B /\ ( H ` d ) e. B ) ) |
11 |
|
breq1 |
|- ( a = ( H ` c ) -> ( a S b <-> ( H ` c ) S b ) ) |
12 |
|
eqeq1 |
|- ( a = ( H ` c ) -> ( a = b <-> ( H ` c ) = b ) ) |
13 |
|
breq2 |
|- ( a = ( H ` c ) -> ( b S a <-> b S ( H ` c ) ) ) |
14 |
11 12 13
|
3orbi123d |
|- ( a = ( H ` c ) -> ( ( a S b \/ a = b \/ b S a ) <-> ( ( H ` c ) S b \/ ( H ` c ) = b \/ b S ( H ` c ) ) ) ) |
15 |
|
breq2 |
|- ( b = ( H ` d ) -> ( ( H ` c ) S b <-> ( H ` c ) S ( H ` d ) ) ) |
16 |
|
eqeq2 |
|- ( b = ( H ` d ) -> ( ( H ` c ) = b <-> ( H ` c ) = ( H ` d ) ) ) |
17 |
|
breq1 |
|- ( b = ( H ` d ) -> ( b S ( H ` c ) <-> ( H ` d ) S ( H ` c ) ) ) |
18 |
15 16 17
|
3orbi123d |
|- ( b = ( H ` d ) -> ( ( ( H ` c ) S b \/ ( H ` c ) = b \/ b S ( H ` c ) ) <-> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
19 |
14 18
|
rspc2v |
|- ( ( ( H ` c ) e. B /\ ( H ` d ) e. B ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
20 |
10 19
|
syl |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
21 |
|
isorel |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( c R d <-> ( H ` c ) S ( H ` d ) ) ) |
22 |
|
f1of1 |
|- ( H : A -1-1-onto-> B -> H : A -1-1-> B ) |
23 |
2 22
|
syl |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-> B ) |
24 |
|
f1fveq |
|- ( ( H : A -1-1-> B /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) = ( H ` d ) <-> c = d ) ) |
25 |
23 24
|
sylan |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( H ` c ) = ( H ` d ) <-> c = d ) ) |
26 |
25
|
bicomd |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( c = d <-> ( H ` c ) = ( H ` d ) ) ) |
27 |
|
isorel |
|- ( ( H Isom R , S ( A , B ) /\ ( d e. A /\ c e. A ) ) -> ( d R c <-> ( H ` d ) S ( H ` c ) ) ) |
28 |
27
|
ancom2s |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( d R c <-> ( H ` d ) S ( H ` c ) ) ) |
29 |
21 26 28
|
3orbi123d |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( ( c R d \/ c = d \/ d R c ) <-> ( ( H ` c ) S ( H ` d ) \/ ( H ` c ) = ( H ` d ) \/ ( H ` d ) S ( H ` c ) ) ) ) |
30 |
20 29
|
sylibrd |
|- ( ( H Isom R , S ( A , B ) /\ ( c e. A /\ d e. A ) ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> ( c R d \/ c = d \/ d R c ) ) ) |
31 |
30
|
ralrimdvva |
|- ( H Isom R , S ( A , B ) -> ( A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) -> A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) |
32 |
1 31
|
anim12d |
|- ( H Isom R , S ( A , B ) -> ( ( S Po B /\ A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) ) -> ( R Po A /\ A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) ) |
33 |
|
df-so |
|- ( S Or B <-> ( S Po B /\ A. a e. B A. b e. B ( a S b \/ a = b \/ b S a ) ) ) |
34 |
|
df-so |
|- ( R Or A <-> ( R Po A /\ A. c e. A A. d e. A ( c R d \/ c = d \/ d R c ) ) ) |
35 |
32 33 34
|
3imtr4g |
|- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |