Step |
Hyp |
Ref |
Expression |
1 |
|
invfval.b |
|- B = ( Base ` C ) |
2 |
|
invfval.n |
|- N = ( Inv ` C ) |
3 |
|
invfval.c |
|- ( ph -> C e. Cat ) |
4 |
|
invfval.x |
|- ( ph -> X e. B ) |
5 |
|
invfval.y |
|- ( ph -> Y e. B ) |
6 |
|
isoval.n |
|- I = ( Iso ` C ) |
7 |
|
isofval |
|- ( C e. Cat -> ( Iso ` C ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( Iso ` C ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) ) |
9 |
2
|
coeq2i |
|- ( ( z e. _V |-> dom z ) o. N ) = ( ( z e. _V |-> dom z ) o. ( Inv ` C ) ) |
10 |
8 6 9
|
3eqtr4g |
|- ( ph -> I = ( ( z e. _V |-> dom z ) o. N ) ) |
11 |
10
|
oveqd |
|- ( ph -> ( X I Y ) = ( X ( ( z e. _V |-> dom z ) o. N ) Y ) ) |
12 |
|
eqid |
|- ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
13 |
|
ovex |
|- ( x ( Sect ` C ) y ) e. _V |
14 |
13
|
inex1 |
|- ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) e. _V |
15 |
12 14
|
fnmpoi |
|- ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( B X. B ) |
16 |
|
eqid |
|- ( Sect ` C ) = ( Sect ` C ) |
17 |
1 2 3 4 5 16
|
invffval |
|- ( ph -> N = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
18 |
17
|
fneq1d |
|- ( ph -> ( N Fn ( B X. B ) <-> ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Fn ( B X. B ) ) ) |
19 |
15 18
|
mpbiri |
|- ( ph -> N Fn ( B X. B ) ) |
20 |
4 5
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( B X. B ) ) |
21 |
|
fvco2 |
|- ( ( N Fn ( B X. B ) /\ <. X , Y >. e. ( B X. B ) ) -> ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ph -> ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) ) |
23 |
|
df-ov |
|- ( X ( ( z e. _V |-> dom z ) o. N ) Y ) = ( ( ( z e. _V |-> dom z ) o. N ) ` <. X , Y >. ) |
24 |
|
ovex |
|- ( X N Y ) e. _V |
25 |
|
dmeq |
|- ( z = ( X N Y ) -> dom z = dom ( X N Y ) ) |
26 |
|
eqid |
|- ( z e. _V |-> dom z ) = ( z e. _V |-> dom z ) |
27 |
24
|
dmex |
|- dom ( X N Y ) e. _V |
28 |
25 26 27
|
fvmpt |
|- ( ( X N Y ) e. _V -> ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = dom ( X N Y ) ) |
29 |
24 28
|
ax-mp |
|- ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = dom ( X N Y ) |
30 |
|
df-ov |
|- ( X N Y ) = ( N ` <. X , Y >. ) |
31 |
30
|
fveq2i |
|- ( ( z e. _V |-> dom z ) ` ( X N Y ) ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) |
32 |
29 31
|
eqtr3i |
|- dom ( X N Y ) = ( ( z e. _V |-> dom z ) ` ( N ` <. X , Y >. ) ) |
33 |
22 23 32
|
3eqtr4g |
|- ( ph -> ( X ( ( z e. _V |-> dom z ) o. N ) Y ) = dom ( X N Y ) ) |
34 |
11 33
|
eqtrd |
|- ( ph -> ( X I Y ) = dom ( X N Y ) ) |