Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | isowe | |- ( H Isom R , S ( A , B ) -> ( R We A <-> S We B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofr | |- ( H Isom R , S ( A , B ) -> ( R Fr A <-> S Fr B ) ) |
|
2 | isoso | |- ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) ) |
|
3 | 1 2 | anbi12d | |- ( H Isom R , S ( A , B ) -> ( ( R Fr A /\ R Or A ) <-> ( S Fr B /\ S Or B ) ) ) |
4 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) ) |
|
5 | df-we | |- ( S We B <-> ( S Fr B /\ S Or B ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( H Isom R , S ( A , B ) -> ( R We A <-> S We B ) ) |