Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> H Isom R , S ( A , B ) ) |
2 |
|
imaeq2 |
|- ( x = y -> ( H " x ) = ( H " y ) ) |
3 |
2
|
eleq1d |
|- ( x = y -> ( ( H " x ) e. _V <-> ( H " y ) e. _V ) ) |
4 |
3
|
spvv |
|- ( A. x ( H " x ) e. _V -> ( H " y ) e. _V ) |
5 |
4
|
adantl |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( H " y ) e. _V ) |
6 |
1 5
|
isofrlem |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S Fr B -> R Fr A ) ) |
7 |
|
isosolem |
|- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |
8 |
7
|
adantr |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S Or B -> R Or A ) ) |
9 |
6 8
|
anim12d |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( ( S Fr B /\ S Or B ) -> ( R Fr A /\ R Or A ) ) ) |
10 |
|
df-we |
|- ( S We B <-> ( S Fr B /\ S Or B ) ) |
11 |
|
df-we |
|- ( R We A <-> ( R Fr A /\ R Or A ) ) |
12 |
9 10 11
|
3imtr4g |
|- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S We B -> R We A ) ) |