Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | isperf | |- ( J e. Perf <-> ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | fveq2 | |- ( j = J -> ( limPt ` j ) = ( limPt ` J ) ) |
|
| 3 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 4 | 3 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 5 | 2 4 | fveq12d | |- ( j = J -> ( ( limPt ` j ) ` U. j ) = ( ( limPt ` J ) ` X ) ) |
| 6 | 5 4 | eqeq12d | |- ( j = J -> ( ( ( limPt ` j ) ` U. j ) = U. j <-> ( ( limPt ` J ) ` X ) = X ) ) |
| 7 | df-perf | |- Perf = { j e. Top | ( ( limPt ` j ) ` U. j ) = U. j } |
|
| 8 | 6 7 | elrab2 | |- ( J e. Perf <-> ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) ) |