| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 |  |-  X = U. J | 
						
							| 2 | 1 | isperf |  |-  ( J e. Perf <-> ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) ) | 
						
							| 3 |  | ssid |  |-  X C_ X | 
						
							| 4 | 1 | lpss |  |-  ( ( J e. Top /\ X C_ X ) -> ( ( limPt ` J ) ` X ) C_ X ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( J e. Top -> ( ( limPt ` J ) ` X ) C_ X ) | 
						
							| 6 |  | eqss |  |-  ( ( ( limPt ` J ) ` X ) = X <-> ( ( ( limPt ` J ) ` X ) C_ X /\ X C_ ( ( limPt ` J ) ` X ) ) ) | 
						
							| 7 | 6 | baib |  |-  ( ( ( limPt ` J ) ` X ) C_ X -> ( ( ( limPt ` J ) ` X ) = X <-> X C_ ( ( limPt ` J ) ` X ) ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( J e. Top -> ( ( ( limPt ` J ) ` X ) = X <-> X C_ ( ( limPt ` J ) ` X ) ) ) | 
						
							| 9 | 8 | pm5.32i |  |-  ( ( J e. Top /\ ( ( limPt ` J ) ` X ) = X ) <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) | 
						
							| 10 | 2 9 | bitri |  |-  ( J e. Perf <-> ( J e. Top /\ X C_ ( ( limPt ` J ) ` X ) ) ) |