| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|- P = ( Base ` G ) |
| 2 |
|
isperp.d |
|- .- = ( dist ` G ) |
| 3 |
|
isperp.i |
|- I = ( Itv ` G ) |
| 4 |
|
isperp.l |
|- L = ( LineG ` G ) |
| 5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
| 7 |
|
isperp2.b |
|- ( ph -> B e. ran L ) |
| 8 |
|
isperp2.x |
|- ( ph -> X e. ( A i^i B ) ) |
| 9 |
|
isperp2d.u |
|- ( ph -> U e. A ) |
| 10 |
|
isperp2d.v |
|- ( ph -> V e. B ) |
| 11 |
|
isperp2d.p |
|- ( ph -> A ( perpG ` G ) B ) |
| 12 |
1 2 3 4 5 6 7 8
|
isperp2 |
|- ( ph -> ( A ( perpG ` G ) B <-> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) ) ) |
| 13 |
11 12
|
mpbid |
|- ( ph -> A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) ) |
| 14 |
|
id |
|- ( u = U -> u = U ) |
| 15 |
|
eqidd |
|- ( u = U -> X = X ) |
| 16 |
|
eqidd |
|- ( u = U -> v = v ) |
| 17 |
14 15 16
|
s3eqd |
|- ( u = U -> <" u X v "> = <" U X v "> ) |
| 18 |
17
|
eleq1d |
|- ( u = U -> ( <" u X v "> e. ( raG ` G ) <-> <" U X v "> e. ( raG ` G ) ) ) |
| 19 |
|
eqidd |
|- ( v = V -> U = U ) |
| 20 |
|
eqidd |
|- ( v = V -> X = X ) |
| 21 |
|
id |
|- ( v = V -> v = V ) |
| 22 |
19 20 21
|
s3eqd |
|- ( v = V -> <" U X v "> = <" U X V "> ) |
| 23 |
22
|
eleq1d |
|- ( v = V -> ( <" U X v "> e. ( raG ` G ) <-> <" U X V "> e. ( raG ` G ) ) ) |
| 24 |
18 23
|
rspc2v |
|- ( ( U e. A /\ V e. B ) -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) ) |
| 25 |
9 10 24
|
syl2anc |
|- ( ph -> ( A. u e. A A. v e. B <" u X v "> e. ( raG ` G ) -> <" U X V "> e. ( raG ` G ) ) ) |
| 26 |
13 25
|
mpd |
|- ( ph -> <" U X V "> e. ( raG ` G ) ) |