| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispgp.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | ispgp.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | simpr |  |-  ( ( p = P /\ g = G ) -> g = G ) | 
						
							| 4 | 3 | fveq2d |  |-  ( ( p = P /\ g = G ) -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( ( p = P /\ g = G ) -> ( Base ` g ) = X ) | 
						
							| 6 | 3 | fveq2d |  |-  ( ( p = P /\ g = G ) -> ( od ` g ) = ( od ` G ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( ( p = P /\ g = G ) -> ( od ` g ) = O ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ( p = P /\ g = G ) -> ( ( od ` g ) ` x ) = ( O ` x ) ) | 
						
							| 9 |  | simpl |  |-  ( ( p = P /\ g = G ) -> p = P ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( p = P /\ g = G ) -> ( p ^ n ) = ( P ^ n ) ) | 
						
							| 11 | 8 10 | eqeq12d |  |-  ( ( p = P /\ g = G ) -> ( ( ( od ` g ) ` x ) = ( p ^ n ) <-> ( O ` x ) = ( P ^ n ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( ( p = P /\ g = G ) -> ( E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) | 
						
							| 13 | 5 12 | raleqbidv |  |-  ( ( p = P /\ g = G ) -> ( A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) <-> A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) | 
						
							| 14 |  | df-pgp |  |-  pGrp = { <. p , g >. | ( ( p e. Prime /\ g e. Grp ) /\ A. x e. ( Base ` g ) E. n e. NN0 ( ( od ` g ) ` x ) = ( p ^ n ) ) } | 
						
							| 15 | 13 14 | brab2a |  |-  ( P pGrp G <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) | 
						
							| 16 |  | df-3an |  |-  ( ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) <-> ( ( P e. Prime /\ G e. Grp ) /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) | 
						
							| 17 | 15 16 | bitr4i |  |-  ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( O ` x ) = ( P ^ n ) ) ) |