| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isphl.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | isphl.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | isphl.h |  |-  ., = ( .i ` W ) | 
						
							| 4 |  | isphl.o |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | isphl.i |  |-  .* = ( *r ` F ) | 
						
							| 6 |  | isphl.z |  |-  Z = ( 0g ` F ) | 
						
							| 7 |  | fvexd |  |-  ( g = W -> ( Base ` g ) e. _V ) | 
						
							| 8 |  | fvexd |  |-  ( ( g = W /\ v = ( Base ` g ) ) -> ( .i ` g ) e. _V ) | 
						
							| 9 |  | fvexd |  |-  ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) e. _V ) | 
						
							| 10 |  | id |  |-  ( f = ( Scalar ` g ) -> f = ( Scalar ` g ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> g = W ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) = ( Scalar ` W ) ) | 
						
							| 13 | 12 2 | eqtr4di |  |-  ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( Scalar ` g ) = F ) | 
						
							| 14 | 10 13 | sylan9eqr |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> f = F ) | 
						
							| 15 | 14 | eleq1d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( f e. *Ring <-> F e. *Ring ) ) | 
						
							| 16 |  | simpllr |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> v = ( Base ` g ) ) | 
						
							| 17 |  | simplll |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> g = W ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( Base ` g ) = ( Base ` W ) ) | 
						
							| 19 | 18 1 | eqtr4di |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( Base ` g ) = V ) | 
						
							| 20 | 16 19 | eqtrd |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> v = V ) | 
						
							| 21 |  | simplr |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> h = ( .i ` g ) ) | 
						
							| 22 | 17 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( .i ` g ) = ( .i ` W ) ) | 
						
							| 23 | 22 3 | eqtr4di |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( .i ` g ) = ., ) | 
						
							| 24 | 21 23 | eqtrd |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> h = ., ) | 
						
							| 25 | 24 | oveqd |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( y h x ) = ( y ., x ) ) | 
						
							| 26 | 20 25 | mpteq12dv |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( y e. v |-> ( y h x ) ) = ( y e. V |-> ( y ., x ) ) ) | 
						
							| 27 | 14 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ringLMod ` f ) = ( ringLMod ` F ) ) | 
						
							| 28 | 17 27 | oveq12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( g LMHom ( ringLMod ` f ) ) = ( W LMHom ( ringLMod ` F ) ) ) | 
						
							| 29 | 26 28 | eleq12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) <-> ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) ) ) | 
						
							| 30 | 24 | oveqd |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x h x ) = ( x ., x ) ) | 
						
							| 31 | 14 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` f ) = ( 0g ` F ) ) | 
						
							| 32 | 31 6 | eqtr4di |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` f ) = Z ) | 
						
							| 33 | 30 32 | eqeq12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( x h x ) = ( 0g ` f ) <-> ( x ., x ) = Z ) ) | 
						
							| 34 | 17 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` g ) = ( 0g ` W ) ) | 
						
							| 35 | 34 4 | eqtr4di |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( 0g ` g ) = .0. ) | 
						
							| 36 | 35 | eqeq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x = ( 0g ` g ) <-> x = .0. ) ) | 
						
							| 37 | 33 36 | imbi12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) <-> ( ( x ., x ) = Z -> x = .0. ) ) ) | 
						
							| 38 | 14 | fveq2d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( *r ` f ) = ( *r ` F ) ) | 
						
							| 39 | 38 5 | eqtr4di |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( *r ` f ) = .* ) | 
						
							| 40 | 24 | oveqd |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( x h y ) = ( x ., y ) ) | 
						
							| 41 | 39 40 | fveq12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( *r ` f ) ` ( x h y ) ) = ( .* ` ( x ., y ) ) ) | 
						
							| 42 | 41 25 | eqeq12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) <-> ( .* ` ( x ., y ) ) = ( y ., x ) ) ) | 
						
							| 43 | 20 42 | raleqbidv |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) <-> A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) | 
						
							| 44 | 29 37 43 | 3anbi123d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) <-> ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) | 
						
							| 45 | 20 44 | raleqbidv |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) <-> A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) | 
						
							| 46 | 15 45 | anbi12d |  |-  ( ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) /\ f = ( Scalar ` g ) ) -> ( ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 47 | 9 46 | sbcied |  |-  ( ( ( g = W /\ v = ( Base ` g ) ) /\ h = ( .i ` g ) ) -> ( [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 48 | 8 47 | sbcied |  |-  ( ( g = W /\ v = ( Base ` g ) ) -> ( [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 49 | 7 48 | sbcied |  |-  ( g = W -> ( [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) <-> ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 50 |  | df-phl |  |-  PreHil = { g e. LVec | [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) } | 
						
							| 51 | 49 50 | elrab2 |  |-  ( W e. PreHil <-> ( W e. LVec /\ ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 52 |  | 3anass |  |-  ( ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) <-> ( W e. LVec /\ ( F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) ) | 
						
							| 53 | 51 52 | bitr4i |  |-  ( W e. PreHil <-> ( W e. LVec /\ F e. *Ring /\ A. x e. V ( ( y e. V |-> ( y ., x ) ) e. ( W LMHom ( ringLMod ` F ) ) /\ ( ( x ., x ) = Z -> x = .0. ) /\ A. y e. V ( .* ` ( x ., y ) ) = ( y ., x ) ) ) ) |