Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P =/= 1 ) |
2 |
1
|
necomd |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 =/= P ) |
3 |
|
simpr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> { n e. NN | n || P } ~~ 2o ) |
4 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
5 |
|
1dvds |
|- ( P e. ZZ -> 1 || P ) |
6 |
4 5
|
syl |
|- ( P e. NN -> 1 || P ) |
7 |
6
|
ad2antrr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 || P ) |
8 |
|
1nn |
|- 1 e. NN |
9 |
|
breq1 |
|- ( n = 1 -> ( n || P <-> 1 || P ) ) |
10 |
9
|
elrab3 |
|- ( 1 e. NN -> ( 1 e. { n e. NN | n || P } <-> 1 || P ) ) |
11 |
8 10
|
ax-mp |
|- ( 1 e. { n e. NN | n || P } <-> 1 || P ) |
12 |
7 11
|
sylibr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> 1 e. { n e. NN | n || P } ) |
13 |
|
iddvds |
|- ( P e. ZZ -> P || P ) |
14 |
4 13
|
syl |
|- ( P e. NN -> P || P ) |
15 |
14
|
ad2antrr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P || P ) |
16 |
|
breq1 |
|- ( n = P -> ( n || P <-> P || P ) ) |
17 |
16
|
elrab3 |
|- ( P e. NN -> ( P e. { n e. NN | n || P } <-> P || P ) ) |
18 |
17
|
ad2antrr |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> ( P e. { n e. NN | n || P } <-> P || P ) ) |
19 |
15 18
|
mpbird |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> P e. { n e. NN | n || P } ) |
20 |
|
en2eqpr |
|- ( ( { n e. NN | n || P } ~~ 2o /\ 1 e. { n e. NN | n || P } /\ P e. { n e. NN | n || P } ) -> ( 1 =/= P -> { n e. NN | n || P } = { 1 , P } ) ) |
21 |
3 12 19 20
|
syl3anc |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> ( 1 =/= P -> { n e. NN | n || P } = { 1 , P } ) ) |
22 |
2 21
|
mpd |
|- ( ( ( P e. NN /\ P =/= 1 ) /\ { n e. NN | n || P } ~~ 2o ) -> { n e. NN | n || P } = { 1 , P } ) |
23 |
22
|
ex |
|- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o -> { n e. NN | n || P } = { 1 , P } ) ) |
24 |
|
necom |
|- ( 1 =/= P <-> P =/= 1 ) |
25 |
|
pr2ne |
|- ( ( 1 e. NN /\ P e. NN ) -> ( { 1 , P } ~~ 2o <-> 1 =/= P ) ) |
26 |
8 25
|
mpan |
|- ( P e. NN -> ( { 1 , P } ~~ 2o <-> 1 =/= P ) ) |
27 |
26
|
biimpar |
|- ( ( P e. NN /\ 1 =/= P ) -> { 1 , P } ~~ 2o ) |
28 |
24 27
|
sylan2br |
|- ( ( P e. NN /\ P =/= 1 ) -> { 1 , P } ~~ 2o ) |
29 |
|
breq1 |
|- ( { n e. NN | n || P } = { 1 , P } -> ( { n e. NN | n || P } ~~ 2o <-> { 1 , P } ~~ 2o ) ) |
30 |
28 29
|
syl5ibrcom |
|- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } = { 1 , P } -> { n e. NN | n || P } ~~ 2o ) ) |
31 |
23 30
|
impbid |
|- ( ( P e. NN /\ P =/= 1 ) -> ( { n e. NN | n || P } ~~ 2o <-> { n e. NN | n || P } = { 1 , P } ) ) |