| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isprm2 |  |-  ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) | 
						
							| 2 |  | iman |  |-  ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) ) | 
						
							| 3 |  | eluz2nn |  |-  ( P e. ( ZZ>= ` 2 ) -> P e. NN ) | 
						
							| 4 |  | nnz |  |-  ( z e. NN -> z e. ZZ ) | 
						
							| 5 |  | dvdsle |  |-  ( ( z e. ZZ /\ P e. NN ) -> ( z || P -> z <_ P ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( z e. NN /\ P e. NN ) -> ( z || P -> z <_ P ) ) | 
						
							| 7 |  | nnge1 |  |-  ( z e. NN -> 1 <_ z ) | 
						
							| 8 | 7 | adantr |  |-  ( ( z e. NN /\ P e. NN ) -> 1 <_ z ) | 
						
							| 9 | 6 8 | jctild |  |-  ( ( z e. NN /\ P e. NN ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) | 
						
							| 10 | 3 9 | sylan2 |  |-  ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( 1 <_ z /\ z <_ P ) ) ) | 
						
							| 11 |  | zre |  |-  ( z e. ZZ -> z e. RR ) | 
						
							| 12 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 13 |  | 1re |  |-  1 e. RR | 
						
							| 14 |  | leltne |  |-  ( ( 1 e. RR /\ z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) | 
						
							| 15 | 13 14 | mp3an1 |  |-  ( ( z e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( z e. RR /\ P e. RR /\ 1 <_ z ) -> ( 1 < z <-> z =/= 1 ) ) | 
						
							| 17 | 16 | 3expia |  |-  ( ( z e. RR /\ P e. RR ) -> ( 1 <_ z -> ( 1 < z <-> z =/= 1 ) ) ) | 
						
							| 18 |  | leltne |  |-  ( ( z e. RR /\ P e. RR /\ z <_ P ) -> ( z < P <-> P =/= z ) ) | 
						
							| 19 | 18 | 3expia |  |-  ( ( z e. RR /\ P e. RR ) -> ( z <_ P -> ( z < P <-> P =/= z ) ) ) | 
						
							| 20 | 17 19 | anim12d |  |-  ( ( z e. RR /\ P e. RR ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) | 
						
							| 21 | 11 12 20 | syl2an |  |-  ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) ) ) | 
						
							| 22 |  | pm4.38 |  |-  ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> ( z =/= 1 /\ P =/= z ) ) ) | 
						
							| 23 |  | df-ne |  |-  ( z =/= 1 <-> -. z = 1 ) | 
						
							| 24 |  | nesym |  |-  ( P =/= z <-> -. z = P ) | 
						
							| 25 | 23 24 | anbi12i |  |-  ( ( z =/= 1 /\ P =/= z ) <-> ( -. z = 1 /\ -. z = P ) ) | 
						
							| 26 |  | ioran |  |-  ( -. ( z = 1 \/ z = P ) <-> ( -. z = 1 /\ -. z = P ) ) | 
						
							| 27 | 25 26 | bitr4i |  |-  ( ( z =/= 1 /\ P =/= z ) <-> -. ( z = 1 \/ z = P ) ) | 
						
							| 28 | 22 27 | bitrdi |  |-  ( ( ( 1 < z <-> z =/= 1 ) /\ ( z < P <-> P =/= z ) ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) | 
						
							| 29 | 21 28 | syl6 |  |-  ( ( z e. ZZ /\ P e. NN ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) | 
						
							| 30 | 4 3 29 | syl2an |  |-  ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 <_ z /\ z <_ P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) | 
						
							| 31 | 10 30 | syld |  |-  ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( z || P -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> -. ( z = 1 \/ z = P ) ) ) | 
						
							| 33 |  | eluzelz |  |-  ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) | 
						
							| 34 |  | 1z |  |-  1 e. ZZ | 
						
							| 35 |  | zltp1le |  |-  ( ( 1 e. ZZ /\ z e. ZZ ) -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) | 
						
							| 36 | 34 35 | mpan |  |-  ( z e. ZZ -> ( 1 < z <-> ( 1 + 1 ) <_ z ) ) | 
						
							| 37 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 38 | 37 | breq1i |  |-  ( 2 <_ z <-> ( 1 + 1 ) <_ z ) | 
						
							| 39 | 36 38 | bitr4di |  |-  ( z e. ZZ -> ( 1 < z <-> 2 <_ z ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( z e. ZZ /\ P e. ZZ ) -> ( 1 < z <-> 2 <_ z ) ) | 
						
							| 41 |  | zltlem1 |  |-  ( ( z e. ZZ /\ P e. ZZ ) -> ( z < P <-> z <_ ( P - 1 ) ) ) | 
						
							| 42 | 40 41 | anbi12d |  |-  ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) | 
						
							| 43 |  | peano2zm |  |-  ( P e. ZZ -> ( P - 1 ) e. ZZ ) | 
						
							| 44 |  | 2z |  |-  2 e. ZZ | 
						
							| 45 |  | elfz |  |-  ( ( z e. ZZ /\ 2 e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) | 
						
							| 46 | 44 45 | mp3an2 |  |-  ( ( z e. ZZ /\ ( P - 1 ) e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) | 
						
							| 47 | 43 46 | sylan2 |  |-  ( ( z e. ZZ /\ P e. ZZ ) -> ( z e. ( 2 ... ( P - 1 ) ) <-> ( 2 <_ z /\ z <_ ( P - 1 ) ) ) ) | 
						
							| 48 | 42 47 | bitr4d |  |-  ( ( z e. ZZ /\ P e. ZZ ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 49 | 4 33 48 | syl2an |  |-  ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( ( 1 < z /\ z < P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 51 | 32 50 | bitr3d |  |-  ( ( ( z e. NN /\ P e. ( ZZ>= ` 2 ) ) /\ z || P ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 52 | 51 | anasss |  |-  ( ( z e. NN /\ ( P e. ( ZZ>= ` 2 ) /\ z || P ) ) -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 53 | 52 | expcom |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( z e. NN -> ( -. ( z = 1 \/ z = P ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) ) | 
						
							| 54 | 53 | pm5.32d |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) ) | 
						
							| 55 |  | fzssuz |  |-  ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 2 ) | 
						
							| 56 |  | 2eluzge1 |  |-  2 e. ( ZZ>= ` 1 ) | 
						
							| 57 |  | uzss |  |-  ( 2 e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) ) | 
						
							| 58 | 56 57 | ax-mp |  |-  ( ZZ>= ` 2 ) C_ ( ZZ>= ` 1 ) | 
						
							| 59 | 55 58 | sstri |  |-  ( 2 ... ( P - 1 ) ) C_ ( ZZ>= ` 1 ) | 
						
							| 60 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 61 | 59 60 | sseqtrri |  |-  ( 2 ... ( P - 1 ) ) C_ NN | 
						
							| 62 | 61 | sseli |  |-  ( z e. ( 2 ... ( P - 1 ) ) -> z e. NN ) | 
						
							| 63 | 62 | pm4.71ri |  |-  ( z e. ( 2 ... ( P - 1 ) ) <-> ( z e. NN /\ z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 64 | 54 63 | bitr4di |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 65 | 64 | notbid |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( -. ( z e. NN /\ -. ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 66 | 2 65 | bitrid |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ z || P ) -> ( ( z e. NN -> ( z = 1 \/ z = P ) ) <-> -. z e. ( 2 ... ( P - 1 ) ) ) ) | 
						
							| 67 | 66 | pm5.74da |  |-  ( P e. ( ZZ>= ` 2 ) -> ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) ) ) | 
						
							| 68 |  | bi2.04 |  |-  ( ( z || P -> ( z e. NN -> ( z = 1 \/ z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) | 
						
							| 69 |  | con2b |  |-  ( ( z || P -> -. z e. ( 2 ... ( P - 1 ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) | 
						
							| 70 | 67 68 69 | 3bitr3g |  |-  ( P e. ( ZZ>= ` 2 ) -> ( ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( z e. ( 2 ... ( P - 1 ) ) -> -. z || P ) ) ) | 
						
							| 71 | 70 | ralbidv2 |  |-  ( P e. ( ZZ>= ` 2 ) -> ( A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) <-> A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) | 
						
							| 72 | 71 | pm5.32i |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) | 
						
							| 73 | 1 72 | bitri |  |-  ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( P - 1 ) ) -. z || P ) ) |