Step |
Hyp |
Ref |
Expression |
1 |
|
isprm2 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
2 |
|
eluz2b3 |
|- ( z e. ( ZZ>= ` 2 ) <-> ( z e. NN /\ z =/= 1 ) ) |
3 |
2
|
imbi1i |
|- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) ) |
4 |
|
impexp |
|- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) ) |
5 |
|
bi2.04 |
|- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z =/= 1 -> z = P ) ) ) |
6 |
|
df-ne |
|- ( z =/= 1 <-> -. z = 1 ) |
7 |
6
|
imbi1i |
|- ( ( z =/= 1 -> z = P ) <-> ( -. z = 1 -> z = P ) ) |
8 |
|
df-or |
|- ( ( z = 1 \/ z = P ) <-> ( -. z = 1 -> z = P ) ) |
9 |
7 8
|
bitr4i |
|- ( ( z =/= 1 -> z = P ) <-> ( z = 1 \/ z = P ) ) |
10 |
9
|
imbi2i |
|- ( ( z || P -> ( z =/= 1 -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
11 |
5 10
|
bitri |
|- ( ( z =/= 1 -> ( z || P -> z = P ) ) <-> ( z || P -> ( z = 1 \/ z = P ) ) ) |
12 |
11
|
imbi2i |
|- ( ( z e. NN -> ( z =/= 1 -> ( z || P -> z = P ) ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
13 |
4 12
|
bitri |
|- ( ( ( z e. NN /\ z =/= 1 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
14 |
3 13
|
bitri |
|- ( ( z e. ( ZZ>= ` 2 ) -> ( z || P -> z = P ) ) <-> ( z e. NN -> ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
15 |
14
|
ralbii2 |
|- ( A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) <-> A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) |
16 |
15
|
anbi2i |
|- ( ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. NN ( z || P -> ( z = 1 \/ z = P ) ) ) ) |
17 |
1 16
|
bitr4i |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. z e. ( ZZ>= ` 2 ) ( z || P -> z = P ) ) ) |