Step |
Hyp |
Ref |
Expression |
1 |
|
psubclset.a |
|- A = ( Atoms ` K ) |
2 |
|
psubclset.p |
|- ._|_ = ( _|_P ` K ) |
3 |
|
psubclset.c |
|- C = ( PSubCl ` K ) |
4 |
1 2 3
|
psubclsetN |
|- ( K e. D -> C = { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } ) |
5 |
4
|
eleq2d |
|- ( K e. D -> ( X e. C <-> X e. { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } ) ) |
6 |
1
|
fvexi |
|- A e. _V |
7 |
6
|
ssex |
|- ( X C_ A -> X e. _V ) |
8 |
7
|
adantr |
|- ( ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) -> X e. _V ) |
9 |
|
sseq1 |
|- ( x = X -> ( x C_ A <-> X C_ A ) ) |
10 |
|
2fveq3 |
|- ( x = X -> ( ._|_ ` ( ._|_ ` x ) ) = ( ._|_ ` ( ._|_ ` X ) ) ) |
11 |
|
id |
|- ( x = X -> x = X ) |
12 |
10 11
|
eqeq12d |
|- ( x = X -> ( ( ._|_ ` ( ._|_ ` x ) ) = x <-> ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |
13 |
9 12
|
anbi12d |
|- ( x = X -> ( ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) ) |
14 |
8 13
|
elab3 |
|- ( X e. { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |
15 |
5 14
|
bitrdi |
|- ( K e. D -> ( X e. C <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) ) |