| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psubclset.a |
|- A = ( Atoms ` K ) |
| 2 |
|
psubclset.p |
|- ._|_ = ( _|_P ` K ) |
| 3 |
|
psubclset.c |
|- C = ( PSubCl ` K ) |
| 4 |
1 2 3
|
psubclsetN |
|- ( K e. D -> C = { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } ) |
| 5 |
4
|
eleq2d |
|- ( K e. D -> ( X e. C <-> X e. { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } ) ) |
| 6 |
1
|
fvexi |
|- A e. _V |
| 7 |
6
|
ssex |
|- ( X C_ A -> X e. _V ) |
| 8 |
7
|
adantr |
|- ( ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) -> X e. _V ) |
| 9 |
|
sseq1 |
|- ( x = X -> ( x C_ A <-> X C_ A ) ) |
| 10 |
|
2fveq3 |
|- ( x = X -> ( ._|_ ` ( ._|_ ` x ) ) = ( ._|_ ` ( ._|_ ` X ) ) ) |
| 11 |
|
id |
|- ( x = X -> x = X ) |
| 12 |
10 11
|
eqeq12d |
|- ( x = X -> ( ( ._|_ ` ( ._|_ ` x ) ) = x <-> ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |
| 13 |
9 12
|
anbi12d |
|- ( x = X -> ( ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) ) |
| 14 |
8 13
|
elab3 |
|- ( X e. { x | ( x C_ A /\ ( ._|_ ` ( ._|_ ` x ) ) = x ) } <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) |
| 15 |
5 14
|
bitrdi |
|- ( K e. D -> ( X e. C <-> ( X C_ A /\ ( ._|_ ` ( ._|_ ` X ) ) = X ) ) ) |