Step |
Hyp |
Ref |
Expression |
1 |
|
pthsfval |
|- ( Paths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } |
2 |
|
3anass |
|- ( ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) <-> ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) ) |
3 |
2
|
opabbii |
|- { <. f , p >. | ( f ( Trails ` G ) p /\ Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) } = { <. f , p >. | ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } |
4 |
1 3
|
eqtri |
|- ( Paths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) ) } |
5 |
|
simpr |
|- ( ( f = F /\ p = P ) -> p = P ) |
6 |
|
fveq2 |
|- ( f = F -> ( # ` f ) = ( # ` F ) ) |
7 |
6
|
oveq2d |
|- ( f = F -> ( 1 ..^ ( # ` f ) ) = ( 1 ..^ ( # ` F ) ) ) |
8 |
7
|
adantr |
|- ( ( f = F /\ p = P ) -> ( 1 ..^ ( # ` f ) ) = ( 1 ..^ ( # ` F ) ) ) |
9 |
5 8
|
reseq12d |
|- ( ( f = F /\ p = P ) -> ( p |` ( 1 ..^ ( # ` f ) ) ) = ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
10 |
9
|
cnveqd |
|- ( ( f = F /\ p = P ) -> `' ( p |` ( 1 ..^ ( # ` f ) ) ) = `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
11 |
10
|
funeqd |
|- ( ( f = F /\ p = P ) -> ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) <-> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) |
12 |
6
|
preq2d |
|- ( f = F -> { 0 , ( # ` f ) } = { 0 , ( # ` F ) } ) |
13 |
12
|
adantr |
|- ( ( f = F /\ p = P ) -> { 0 , ( # ` f ) } = { 0 , ( # ` F ) } ) |
14 |
5 13
|
imaeq12d |
|- ( ( f = F /\ p = P ) -> ( p " { 0 , ( # ` f ) } ) = ( P " { 0 , ( # ` F ) } ) ) |
15 |
5 8
|
imaeq12d |
|- ( ( f = F /\ p = P ) -> ( p " ( 1 ..^ ( # ` f ) ) ) = ( P " ( 1 ..^ ( # ` F ) ) ) ) |
16 |
14 15
|
ineq12d |
|- ( ( f = F /\ p = P ) -> ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
17 |
16
|
eqeq1d |
|- ( ( f = F /\ p = P ) -> ( ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) <-> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
18 |
11 17
|
anbi12d |
|- ( ( f = F /\ p = P ) -> ( ( Fun `' ( p |` ( 1 ..^ ( # ` f ) ) ) /\ ( ( p " { 0 , ( # ` f ) } ) i^i ( p " ( 1 ..^ ( # ` f ) ) ) ) = (/) ) <-> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
19 |
|
reltrls |
|- Rel ( Trails ` G ) |
20 |
4 18 19
|
brfvopabrbr |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
21 |
|
3anass |
|- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
22 |
20 21
|
bitr4i |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |