Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|- P = ( Base ` G ) |
2 |
|
israg.d |
|- .- = ( dist ` G ) |
3 |
|
israg.i |
|- I = ( Itv ` G ) |
4 |
|
israg.l |
|- L = ( LineG ` G ) |
5 |
|
israg.s |
|- S = ( pInvG ` G ) |
6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
israg.a |
|- ( ph -> A e. P ) |
8 |
|
israg.b |
|- ( ph -> B e. P ) |
9 |
|
israg.c |
|- ( ph -> C e. P ) |
10 |
7 8 9
|
s3cld |
|- ( ph -> <" A B C "> e. Word P ) |
11 |
|
fveqeq2 |
|- ( w = <" A B C "> -> ( ( # ` w ) = 3 <-> ( # ` <" A B C "> ) = 3 ) ) |
12 |
|
fveq1 |
|- ( w = <" A B C "> -> ( w ` 0 ) = ( <" A B C "> ` 0 ) ) |
13 |
|
fveq1 |
|- ( w = <" A B C "> -> ( w ` 2 ) = ( <" A B C "> ` 2 ) ) |
14 |
12 13
|
oveq12d |
|- ( w = <" A B C "> -> ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) ) |
15 |
|
fveq1 |
|- ( w = <" A B C "> -> ( w ` 1 ) = ( <" A B C "> ` 1 ) ) |
16 |
15
|
fveq2d |
|- ( w = <" A B C "> -> ( S ` ( w ` 1 ) ) = ( S ` ( <" A B C "> ` 1 ) ) ) |
17 |
16 13
|
fveq12d |
|- ( w = <" A B C "> -> ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) = ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) |
18 |
12 17
|
oveq12d |
|- ( w = <" A B C "> -> ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) |
19 |
14 18
|
eqeq12d |
|- ( w = <" A B C "> -> ( ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) <-> ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) |
20 |
11 19
|
anbi12d |
|- ( w = <" A B C "> -> ( ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) <-> ( ( # ` <" A B C "> ) = 3 /\ ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) ) |
21 |
20
|
elrab3 |
|- ( <" A B C "> e. Word P -> ( <" A B C "> e. { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } <-> ( ( # ` <" A B C "> ) = 3 /\ ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) ) |
22 |
10 21
|
syl |
|- ( ph -> ( <" A B C "> e. { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } <-> ( ( # ` <" A B C "> ) = 3 /\ ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) ) |
23 |
|
df-rag |
|- raG = ( g e. _V |-> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) |
24 |
|
simpr |
|- ( ( ph /\ g = G ) -> g = G ) |
25 |
24
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( Base ` g ) = ( Base ` G ) ) |
26 |
25 1
|
eqtr4di |
|- ( ( ph /\ g = G ) -> ( Base ` g ) = P ) |
27 |
|
wrdeq |
|- ( ( Base ` g ) = P -> Word ( Base ` g ) = Word P ) |
28 |
26 27
|
syl |
|- ( ( ph /\ g = G ) -> Word ( Base ` g ) = Word P ) |
29 |
24
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( dist ` g ) = ( dist ` G ) ) |
30 |
29 2
|
eqtr4di |
|- ( ( ph /\ g = G ) -> ( dist ` g ) = .- ) |
31 |
30
|
oveqd |
|- ( ( ph /\ g = G ) -> ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) .- ( w ` 2 ) ) ) |
32 |
|
eqidd |
|- ( ( ph /\ g = G ) -> ( w ` 0 ) = ( w ` 0 ) ) |
33 |
24
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( pInvG ` g ) = ( pInvG ` G ) ) |
34 |
33 5
|
eqtr4di |
|- ( ( ph /\ g = G ) -> ( pInvG ` g ) = S ) |
35 |
34
|
fveq1d |
|- ( ( ph /\ g = G ) -> ( ( pInvG ` g ) ` ( w ` 1 ) ) = ( S ` ( w ` 1 ) ) ) |
36 |
35
|
fveq1d |
|- ( ( ph /\ g = G ) -> ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) = ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) |
37 |
30 32 36
|
oveq123d |
|- ( ( ph /\ g = G ) -> ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) |
38 |
31 37
|
eqeq12d |
|- ( ( ph /\ g = G ) -> ( ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) <-> ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) ) |
39 |
38
|
anbi2d |
|- ( ( ph /\ g = G ) -> ( ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) <-> ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) ) ) |
40 |
28 39
|
rabeqbidv |
|- ( ( ph /\ g = G ) -> { w e. Word ( Base ` g ) | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) ( dist ` g ) ( w ` 2 ) ) = ( ( w ` 0 ) ( dist ` g ) ( ( ( pInvG ` g ) ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } = { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) |
41 |
6
|
elexd |
|- ( ph -> G e. _V ) |
42 |
1
|
fvexi |
|- P e. _V |
43 |
42
|
wrdexi |
|- Word P e. _V |
44 |
43
|
rabex |
|- { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } e. _V |
45 |
44
|
a1i |
|- ( ph -> { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } e. _V ) |
46 |
23 40 41 45
|
fvmptd2 |
|- ( ph -> ( raG ` G ) = { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) |
47 |
46
|
eleq2d |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> <" A B C "> e. { w e. Word P | ( ( # ` w ) = 3 /\ ( ( w ` 0 ) .- ( w ` 2 ) ) = ( ( w ` 0 ) .- ( ( S ` ( w ` 1 ) ) ` ( w ` 2 ) ) ) ) } ) ) |
48 |
|
s3fv0 |
|- ( A e. P -> ( <" A B C "> ` 0 ) = A ) |
49 |
7 48
|
syl |
|- ( ph -> ( <" A B C "> ` 0 ) = A ) |
50 |
49
|
eqcomd |
|- ( ph -> A = ( <" A B C "> ` 0 ) ) |
51 |
|
s3fv2 |
|- ( C e. P -> ( <" A B C "> ` 2 ) = C ) |
52 |
9 51
|
syl |
|- ( ph -> ( <" A B C "> ` 2 ) = C ) |
53 |
52
|
eqcomd |
|- ( ph -> C = ( <" A B C "> ` 2 ) ) |
54 |
50 53
|
oveq12d |
|- ( ph -> ( A .- C ) = ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) ) |
55 |
|
s3fv1 |
|- ( B e. P -> ( <" A B C "> ` 1 ) = B ) |
56 |
8 55
|
syl |
|- ( ph -> ( <" A B C "> ` 1 ) = B ) |
57 |
56
|
eqcomd |
|- ( ph -> B = ( <" A B C "> ` 1 ) ) |
58 |
57
|
fveq2d |
|- ( ph -> ( S ` B ) = ( S ` ( <" A B C "> ` 1 ) ) ) |
59 |
58 53
|
fveq12d |
|- ( ph -> ( ( S ` B ) ` C ) = ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) |
60 |
50 59
|
oveq12d |
|- ( ph -> ( A .- ( ( S ` B ) ` C ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) |
61 |
54 60
|
eqeq12d |
|- ( ph -> ( ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) <-> ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) |
62 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
63 |
62
|
a1i |
|- ( ph -> ( # ` <" A B C "> ) = 3 ) |
64 |
63
|
biantrurd |
|- ( ph -> ( ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) <-> ( ( # ` <" A B C "> ) = 3 /\ ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) ) |
65 |
61 64
|
bitrd |
|- ( ph -> ( ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) <-> ( ( # ` <" A B C "> ) = 3 /\ ( ( <" A B C "> ` 0 ) .- ( <" A B C "> ` 2 ) ) = ( ( <" A B C "> ` 0 ) .- ( ( S ` ( <" A B C "> ` 1 ) ) ` ( <" A B C "> ` 2 ) ) ) ) ) ) |
66 |
22 47 65
|
3bitr4d |
|- ( ph -> ( <" A B C "> e. ( raG ` G ) <-> ( A .- C ) = ( A .- ( ( S ` B ) ` C ) ) ) ) |