| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isrgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isrgr.d |
|- D = ( VtxDeg ` G ) |
| 3 |
|
eleq1 |
|- ( k = K -> ( k e. NN0* <-> K e. NN0* ) ) |
| 4 |
3
|
adantl |
|- ( ( g = G /\ k = K ) -> ( k e. NN0* <-> K e. NN0* ) ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 6 |
5
|
adantr |
|- ( ( g = G /\ k = K ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
| 7 |
|
fveq2 |
|- ( g = G -> ( VtxDeg ` g ) = ( VtxDeg ` G ) ) |
| 8 |
7
|
fveq1d |
|- ( g = G -> ( ( VtxDeg ` g ) ` v ) = ( ( VtxDeg ` G ) ` v ) ) |
| 9 |
8
|
adantr |
|- ( ( g = G /\ k = K ) -> ( ( VtxDeg ` g ) ` v ) = ( ( VtxDeg ` G ) ` v ) ) |
| 10 |
|
simpr |
|- ( ( g = G /\ k = K ) -> k = K ) |
| 11 |
9 10
|
eqeq12d |
|- ( ( g = G /\ k = K ) -> ( ( ( VtxDeg ` g ) ` v ) = k <-> ( ( VtxDeg ` G ) ` v ) = K ) ) |
| 12 |
6 11
|
raleqbidv |
|- ( ( g = G /\ k = K ) -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k <-> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K ) ) |
| 13 |
4 12
|
anbi12d |
|- ( ( g = G /\ k = K ) -> ( ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) <-> ( K e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K ) ) ) |
| 14 |
|
df-rgr |
|- RegGraph = { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) } |
| 15 |
13 14
|
brabga |
|- ( ( G e. W /\ K e. Z ) -> ( G RegGraph K <-> ( K e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K ) ) ) |
| 16 |
2
|
fveq1i |
|- ( D ` v ) = ( ( VtxDeg ` G ) ` v ) |
| 17 |
16
|
eqeq1i |
|- ( ( D ` v ) = K <-> ( ( VtxDeg ` G ) ` v ) = K ) |
| 18 |
1 17
|
raleqbii |
|- ( A. v e. V ( D ` v ) = K <-> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K ) |
| 19 |
18
|
bicomi |
|- ( A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K <-> A. v e. V ( D ` v ) = K ) |
| 20 |
19
|
a1i |
|- ( ( G e. W /\ K e. Z ) -> ( A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K <-> A. v e. V ( D ` v ) = K ) ) |
| 21 |
20
|
anbi2d |
|- ( ( G e. W /\ K e. Z ) -> ( ( K e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = K ) <-> ( K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) |
| 22 |
15 21
|
bitrd |
|- ( ( G e. W /\ K e. Z ) -> ( G RegGraph K <-> ( K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) |