| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isrhm.m |
|- M = ( mulGrp ` R ) |
| 2 |
|
isrhm.n |
|- N = ( mulGrp ` S ) |
| 3 |
|
dfrhm2 |
|- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
| 4 |
3
|
elmpocl |
|- ( F e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
| 5 |
|
oveq12 |
|- ( ( r = R /\ s = S ) -> ( r GrpHom s ) = ( R GrpHom S ) ) |
| 6 |
|
fveq2 |
|- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
| 7 |
|
fveq2 |
|- ( s = S -> ( mulGrp ` s ) = ( mulGrp ` S ) ) |
| 8 |
6 7
|
oveqan12d |
|- ( ( r = R /\ s = S ) -> ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 9 |
5 8
|
ineq12d |
|- ( ( r = R /\ s = S ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 10 |
|
ovex |
|- ( R GrpHom S ) e. _V |
| 11 |
10
|
inex1 |
|- ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V |
| 12 |
9 3 11
|
ovmpoa |
|- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 13 |
12
|
eleq2d |
|- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
| 14 |
|
elin |
|- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
| 15 |
1 2
|
oveq12i |
|- ( M MndHom N ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) |
| 16 |
15
|
eqcomi |
|- ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) = ( M MndHom N ) |
| 17 |
16
|
eleq2i |
|- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> F e. ( M MndHom N ) ) |
| 18 |
17
|
anbi2i |
|- ( ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
| 19 |
14 18
|
bitri |
|- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
| 20 |
13 19
|
bitrdi |
|- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |
| 21 |
4 20
|
biadanii |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |