Step |
Hyp |
Ref |
Expression |
1 |
|
isrhm.m |
|- M = ( mulGrp ` R ) |
2 |
|
isrhm.n |
|- N = ( mulGrp ` S ) |
3 |
|
dfrhm2 |
|- RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) ) |
4 |
3
|
elmpocl |
|- ( F e. ( R RingHom S ) -> ( R e. Ring /\ S e. Ring ) ) |
5 |
|
oveq12 |
|- ( ( r = R /\ s = S ) -> ( r GrpHom s ) = ( R GrpHom S ) ) |
6 |
|
fveq2 |
|- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
7 |
|
fveq2 |
|- ( s = S -> ( mulGrp ` s ) = ( mulGrp ` S ) ) |
8 |
6 7
|
oveqan12d |
|- ( ( r = R /\ s = S ) -> ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
9 |
5 8
|
ineq12d |
|- ( ( r = R /\ s = S ) -> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
10 |
|
ovex |
|- ( R GrpHom S ) e. _V |
11 |
10
|
inex1 |
|- ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) e. _V |
12 |
9 3 11
|
ovmpoa |
|- ( ( R e. Ring /\ S e. Ring ) -> ( R RingHom S ) = ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
13 |
12
|
eleq2d |
|- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
14 |
|
elin |
|- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
15 |
1 2
|
oveq12i |
|- ( M MndHom N ) = ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) |
16 |
15
|
eqcomi |
|- ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) = ( M MndHom N ) |
17 |
16
|
eleq2i |
|- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> F e. ( M MndHom N ) ) |
18 |
17
|
anbi2i |
|- ( ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
19 |
14 18
|
bitri |
|- ( F e. ( ( R GrpHom S ) i^i ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) |
20 |
13 19
|
bitrdi |
|- ( ( R e. Ring /\ S e. Ring ) -> ( F e. ( R RingHom S ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |
21 |
4 20
|
biadanii |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MndHom N ) ) ) ) |