Metamath Proof Explorer


Theorem isrhm2d

Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypotheses isrhmd.b
|- B = ( Base ` R )
isrhmd.o
|- .1. = ( 1r ` R )
isrhmd.n
|- N = ( 1r ` S )
isrhmd.t
|- .x. = ( .r ` R )
isrhmd.u
|- .X. = ( .r ` S )
isrhmd.r
|- ( ph -> R e. Ring )
isrhmd.s
|- ( ph -> S e. Ring )
isrhmd.ho
|- ( ph -> ( F ` .1. ) = N )
isrhmd.ht
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) )
isrhm2d.f
|- ( ph -> F e. ( R GrpHom S ) )
Assertion isrhm2d
|- ( ph -> F e. ( R RingHom S ) )

Proof

Step Hyp Ref Expression
1 isrhmd.b
 |-  B = ( Base ` R )
2 isrhmd.o
 |-  .1. = ( 1r ` R )
3 isrhmd.n
 |-  N = ( 1r ` S )
4 isrhmd.t
 |-  .x. = ( .r ` R )
5 isrhmd.u
 |-  .X. = ( .r ` S )
6 isrhmd.r
 |-  ( ph -> R e. Ring )
7 isrhmd.s
 |-  ( ph -> S e. Ring )
8 isrhmd.ho
 |-  ( ph -> ( F ` .1. ) = N )
9 isrhmd.ht
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) )
10 isrhm2d.f
 |-  ( ph -> F e. ( R GrpHom S ) )
11 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
12 11 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
13 6 12 syl
 |-  ( ph -> ( mulGrp ` R ) e. Mnd )
14 eqid
 |-  ( mulGrp ` S ) = ( mulGrp ` S )
15 14 ringmgp
 |-  ( S e. Ring -> ( mulGrp ` S ) e. Mnd )
16 7 15 syl
 |-  ( ph -> ( mulGrp ` S ) e. Mnd )
17 eqid
 |-  ( Base ` S ) = ( Base ` S )
18 1 17 ghmf
 |-  ( F e. ( R GrpHom S ) -> F : B --> ( Base ` S ) )
19 10 18 syl
 |-  ( ph -> F : B --> ( Base ` S ) )
20 9 ralrimivva
 |-  ( ph -> A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) )
21 11 2 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
22 21 fveq2i
 |-  ( F ` .1. ) = ( F ` ( 0g ` ( mulGrp ` R ) ) )
23 14 3 ringidval
 |-  N = ( 0g ` ( mulGrp ` S ) )
24 8 22 23 3eqtr3g
 |-  ( ph -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) )
25 19 20 24 3jca
 |-  ( ph -> ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) )
26 11 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
27 14 17 mgpbas
 |-  ( Base ` S ) = ( Base ` ( mulGrp ` S ) )
28 11 4 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
29 14 5 mgpplusg
 |-  .X. = ( +g ` ( mulGrp ` S ) )
30 eqid
 |-  ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) )
31 eqid
 |-  ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) )
32 26 27 28 29 30 31 ismhm
 |-  ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> ( ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` S ) e. Mnd ) /\ ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) ) )
33 13 16 25 32 syl21anbrc
 |-  ( ph -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) )
34 10 33 jca
 |-  ( ph -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) )
35 11 14 isrhm
 |-  ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) )
36 6 7 34 35 syl21anbrc
 |-  ( ph -> F e. ( R RingHom S ) )