Step |
Hyp |
Ref |
Expression |
1 |
|
isrhmd.b |
|- B = ( Base ` R ) |
2 |
|
isrhmd.o |
|- .1. = ( 1r ` R ) |
3 |
|
isrhmd.n |
|- N = ( 1r ` S ) |
4 |
|
isrhmd.t |
|- .x. = ( .r ` R ) |
5 |
|
isrhmd.u |
|- .X. = ( .r ` S ) |
6 |
|
isrhmd.r |
|- ( ph -> R e. Ring ) |
7 |
|
isrhmd.s |
|- ( ph -> S e. Ring ) |
8 |
|
isrhmd.ho |
|- ( ph -> ( F ` .1. ) = N ) |
9 |
|
isrhmd.ht |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
10 |
|
isrhm2d.f |
|- ( ph -> F e. ( R GrpHom S ) ) |
11 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
12 |
11
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
13 |
6 12
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
14 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
15 |
14
|
ringmgp |
|- ( S e. Ring -> ( mulGrp ` S ) e. Mnd ) |
16 |
7 15
|
syl |
|- ( ph -> ( mulGrp ` S ) e. Mnd ) |
17 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
18 |
1 17
|
ghmf |
|- ( F e. ( R GrpHom S ) -> F : B --> ( Base ` S ) ) |
19 |
10 18
|
syl |
|- ( ph -> F : B --> ( Base ` S ) ) |
20 |
9
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
21 |
11 2
|
ringidval |
|- .1. = ( 0g ` ( mulGrp ` R ) ) |
22 |
21
|
fveq2i |
|- ( F ` .1. ) = ( F ` ( 0g ` ( mulGrp ` R ) ) ) |
23 |
14 3
|
ringidval |
|- N = ( 0g ` ( mulGrp ` S ) ) |
24 |
8 22 23
|
3eqtr3g |
|- ( ph -> ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) |
25 |
19 20 24
|
3jca |
|- ( ph -> ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) ) |
26 |
11 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
27 |
14 17
|
mgpbas |
|- ( Base ` S ) = ( Base ` ( mulGrp ` S ) ) |
28 |
11 4
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
29 |
14 5
|
mgpplusg |
|- .X. = ( +g ` ( mulGrp ` S ) ) |
30 |
|
eqid |
|- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
31 |
|
eqid |
|- ( 0g ` ( mulGrp ` S ) ) = ( 0g ` ( mulGrp ` S ) ) |
32 |
26 27 28 29 30 31
|
ismhm |
|- ( F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) <-> ( ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` S ) e. Mnd ) /\ ( F : B --> ( Base ` S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) /\ ( F ` ( 0g ` ( mulGrp ` R ) ) ) = ( 0g ` ( mulGrp ` S ) ) ) ) ) |
33 |
13 16 25 32
|
syl21anbrc |
|- ( ph -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
34 |
10 33
|
jca |
|- ( ph -> ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) |
35 |
11 14
|
isrhm |
|- ( F e. ( R RingHom S ) <-> ( ( R e. Ring /\ S e. Ring ) /\ ( F e. ( R GrpHom S ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) ) ) |
36 |
6 7 34 35
|
syl21anbrc |
|- ( ph -> F e. ( R RingHom S ) ) |