Metamath Proof Explorer


Theorem isrhmd

Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses isrhmd.b
|- B = ( Base ` R )
isrhmd.o
|- .1. = ( 1r ` R )
isrhmd.n
|- N = ( 1r ` S )
isrhmd.t
|- .x. = ( .r ` R )
isrhmd.u
|- .X. = ( .r ` S )
isrhmd.r
|- ( ph -> R e. Ring )
isrhmd.s
|- ( ph -> S e. Ring )
isrhmd.ho
|- ( ph -> ( F ` .1. ) = N )
isrhmd.ht
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) )
isrhmd.c
|- C = ( Base ` S )
isrhmd.p
|- .+ = ( +g ` R )
isrhmd.q
|- .+^ = ( +g ` S )
isrhmd.f
|- ( ph -> F : B --> C )
isrhmd.hp
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
Assertion isrhmd
|- ( ph -> F e. ( R RingHom S ) )

Proof

Step Hyp Ref Expression
1 isrhmd.b
 |-  B = ( Base ` R )
2 isrhmd.o
 |-  .1. = ( 1r ` R )
3 isrhmd.n
 |-  N = ( 1r ` S )
4 isrhmd.t
 |-  .x. = ( .r ` R )
5 isrhmd.u
 |-  .X. = ( .r ` S )
6 isrhmd.r
 |-  ( ph -> R e. Ring )
7 isrhmd.s
 |-  ( ph -> S e. Ring )
8 isrhmd.ho
 |-  ( ph -> ( F ` .1. ) = N )
9 isrhmd.ht
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) )
10 isrhmd.c
 |-  C = ( Base ` S )
11 isrhmd.p
 |-  .+ = ( +g ` R )
12 isrhmd.q
 |-  .+^ = ( +g ` S )
13 isrhmd.f
 |-  ( ph -> F : B --> C )
14 isrhmd.hp
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) )
15 ringgrp
 |-  ( R e. Ring -> R e. Grp )
16 6 15 syl
 |-  ( ph -> R e. Grp )
17 ringgrp
 |-  ( S e. Ring -> S e. Grp )
18 7 17 syl
 |-  ( ph -> S e. Grp )
19 1 10 11 12 16 18 13 14 isghmd
 |-  ( ph -> F e. ( R GrpHom S ) )
20 1 2 3 4 5 6 7 8 9 19 isrhm2d
 |-  ( ph -> F e. ( R RingHom S ) )