Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrhmd.b | |- B = ( Base ` R ) |
|
isrhmd.o | |- .1. = ( 1r ` R ) |
||
isrhmd.n | |- N = ( 1r ` S ) |
||
isrhmd.t | |- .x. = ( .r ` R ) |
||
isrhmd.u | |- .X. = ( .r ` S ) |
||
isrhmd.r | |- ( ph -> R e. Ring ) |
||
isrhmd.s | |- ( ph -> S e. Ring ) |
||
isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) |
||
isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
||
isrhmd.c | |- C = ( Base ` S ) |
||
isrhmd.p | |- .+ = ( +g ` R ) |
||
isrhmd.q | |- .+^ = ( +g ` S ) |
||
isrhmd.f | |- ( ph -> F : B --> C ) |
||
isrhmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
Assertion | isrhmd | |- ( ph -> F e. ( R RingHom S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.b | |- B = ( Base ` R ) |
|
2 | isrhmd.o | |- .1. = ( 1r ` R ) |
|
3 | isrhmd.n | |- N = ( 1r ` S ) |
|
4 | isrhmd.t | |- .x. = ( .r ` R ) |
|
5 | isrhmd.u | |- .X. = ( .r ` S ) |
|
6 | isrhmd.r | |- ( ph -> R e. Ring ) |
|
7 | isrhmd.s | |- ( ph -> S e. Ring ) |
|
8 | isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) |
|
9 | isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
|
10 | isrhmd.c | |- C = ( Base ` S ) |
|
11 | isrhmd.p | |- .+ = ( +g ` R ) |
|
12 | isrhmd.q | |- .+^ = ( +g ` S ) |
|
13 | isrhmd.f | |- ( ph -> F : B --> C ) |
|
14 | isrhmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
15 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
16 | 6 15 | syl | |- ( ph -> R e. Grp ) |
17 | ringgrp | |- ( S e. Ring -> S e. Grp ) |
|
18 | 7 17 | syl | |- ( ph -> S e. Grp ) |
19 | 1 10 11 12 16 18 13 14 | isghmd | |- ( ph -> F e. ( R GrpHom S ) ) |
20 | 1 2 3 4 5 6 7 8 9 19 | isrhm2d | |- ( ph -> F e. ( R RingHom S ) ) |