Description: Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrhmd.b | |- B = ( Base ` R ) | |
| isrhmd.o | |- .1. = ( 1r ` R ) | ||
| isrhmd.n | |- N = ( 1r ` S ) | ||
| isrhmd.t | |- .x. = ( .r ` R ) | ||
| isrhmd.u | |- .X. = ( .r ` S ) | ||
| isrhmd.r | |- ( ph -> R e. Ring ) | ||
| isrhmd.s | |- ( ph -> S e. Ring ) | ||
| isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) | ||
| isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) | ||
| isrhmd.c | |- C = ( Base ` S ) | ||
| isrhmd.p | |- .+ = ( +g ` R ) | ||
| isrhmd.q | |- .+^ = ( +g ` S ) | ||
| isrhmd.f | |- ( ph -> F : B --> C ) | ||
| isrhmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) | ||
| Assertion | isrhmd | |- ( ph -> F e. ( R RingHom S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isrhmd.b | |- B = ( Base ` R ) | |
| 2 | isrhmd.o | |- .1. = ( 1r ` R ) | |
| 3 | isrhmd.n | |- N = ( 1r ` S ) | |
| 4 | isrhmd.t | |- .x. = ( .r ` R ) | |
| 5 | isrhmd.u | |- .X. = ( .r ` S ) | |
| 6 | isrhmd.r | |- ( ph -> R e. Ring ) | |
| 7 | isrhmd.s | |- ( ph -> S e. Ring ) | |
| 8 | isrhmd.ho | |- ( ph -> ( F ` .1. ) = N ) | |
| 9 | isrhmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) | |
| 10 | isrhmd.c | |- C = ( Base ` S ) | |
| 11 | isrhmd.p | |- .+ = ( +g ` R ) | |
| 12 | isrhmd.q | |- .+^ = ( +g ` S ) | |
| 13 | isrhmd.f | |- ( ph -> F : B --> C ) | |
| 14 | isrhmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) | |
| 15 | ringgrp | |- ( R e. Ring -> R e. Grp ) | |
| 16 | 6 15 | syl | |- ( ph -> R e. Grp ) | 
| 17 | ringgrp | |- ( S e. Ring -> S e. Grp ) | |
| 18 | 7 17 | syl | |- ( ph -> S e. Grp ) | 
| 19 | 1 10 11 12 16 18 13 14 | isghmd | |- ( ph -> F e. ( R GrpHom S ) ) | 
| 20 | 1 2 3 4 5 6 7 8 9 19 | isrhm2d | |- ( ph -> F e. ( R RingHom S ) ) |