| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isridlrng.u |  |-  U = ( LIdeal ` ( oppR ` R ) ) | 
						
							| 2 |  | isridlrng.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | isridlrng.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | eqid |  |-  ( oppR ` R ) = ( oppR ` R ) | 
						
							| 5 | 4 | opprrng |  |-  ( R e. Rng -> ( oppR ` R ) e. Rng ) | 
						
							| 6 | 4 | opprsubg |  |-  ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) | 
						
							| 7 | 6 | a1i |  |-  ( R e. Rng -> ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( R e. Rng -> ( I e. ( SubGrp ` R ) <-> I e. ( SubGrp ` ( oppR ` R ) ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> I e. ( SubGrp ` ( oppR ` R ) ) ) | 
						
							| 10 | 4 2 | opprbas |  |-  B = ( Base ` ( oppR ` R ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) | 
						
							| 12 | 1 10 11 | dflidl2rng |  |-  ( ( ( oppR ` R ) e. Rng /\ I e. ( SubGrp ` ( oppR ` R ) ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) | 
						
							| 13 | 5 9 12 | syl2an2r |  |-  ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) | 
						
							| 14 | 2 3 4 11 | opprmul |  |-  ( x ( .r ` ( oppR ` R ) ) y ) = ( y .x. x ) | 
						
							| 15 | 14 | eleq1i |  |-  ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) | 
						
							| 16 | 15 | a1i |  |-  ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) /\ y e. I ) -> ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) ) | 
						
							| 17 | 16 | ralbidva |  |-  ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) -> ( A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. y e. I ( y .x. x ) e. I ) ) | 
						
							| 18 | 17 | ralbidva |  |-  ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) | 
						
							| 19 | 13 18 | bitrd |  |-  ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |