Step |
Hyp |
Ref |
Expression |
1 |
|
isridlrng.u |
|- U = ( LIdeal ` ( oppR ` R ) ) |
2 |
|
isridlrng.b |
|- B = ( Base ` R ) |
3 |
|
isridlrng.t |
|- .x. = ( .r ` R ) |
4 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
5 |
4
|
opprrng |
|- ( R e. Rng -> ( oppR ` R ) e. Rng ) |
6 |
4
|
opprsubg |
|- ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) |
7 |
6
|
a1i |
|- ( R e. Rng -> ( SubGrp ` R ) = ( SubGrp ` ( oppR ` R ) ) ) |
8 |
7
|
eleq2d |
|- ( R e. Rng -> ( I e. ( SubGrp ` R ) <-> I e. ( SubGrp ` ( oppR ` R ) ) ) ) |
9 |
8
|
biimpa |
|- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> I e. ( SubGrp ` ( oppR ` R ) ) ) |
10 |
4 2
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
11 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
12 |
1 10 11
|
dflidl2rng |
|- ( ( ( oppR ` R ) e. Rng /\ I e. ( SubGrp ` ( oppR ` R ) ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) |
13 |
5 9 12
|
syl2an2r |
|- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I ) ) |
14 |
2 3 4 11
|
opprmul |
|- ( x ( .r ` ( oppR ` R ) ) y ) = ( y .x. x ) |
15 |
14
|
eleq1i |
|- ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) |
16 |
15
|
a1i |
|- ( ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) /\ y e. I ) -> ( ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> ( y .x. x ) e. I ) ) |
17 |
16
|
ralbidva |
|- ( ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) /\ x e. B ) -> ( A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. y e. I ( y .x. x ) e. I ) ) |
18 |
17
|
ralbidva |
|- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( A. x e. B A. y e. I ( x ( .r ` ( oppR ` R ) ) y ) e. I <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |
19 |
13 18
|
bitrd |
|- ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( y .x. x ) e. I ) ) |