Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrisc.1 | |- R e. _V | |
| isrisc.2 | |- S e. _V | ||
| Assertion | isrisc | |- ( R ~=R S <-> ( ( R e. RingOps /\ S e. RingOps ) /\ E. f f e. ( R RingOpsIso S ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isrisc.1 | |- R e. _V | |
| 2 | isrisc.2 | |- S e. _V | |
| 3 | isriscg | |- ( ( R e. _V /\ S e. _V ) -> ( R ~=R S <-> ( ( R e. RingOps /\ S e. RingOps ) /\ E. f f e. ( R RingOpsIso S ) ) ) ) | |
| 4 | 1 2 3 | mp2an | |- ( R ~=R S <-> ( ( R e. RingOps /\ S e. RingOps ) /\ E. f f e. ( R RingOpsIso S ) ) ) |