Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( r = R -> ( r e. RingOps <-> R e. RingOps ) ) |
2 |
1
|
anbi1d |
|- ( r = R -> ( ( r e. RingOps /\ s e. RingOps ) <-> ( R e. RingOps /\ s e. RingOps ) ) ) |
3 |
|
oveq1 |
|- ( r = R -> ( r RngIso s ) = ( R RngIso s ) ) |
4 |
3
|
eleq2d |
|- ( r = R -> ( f e. ( r RngIso s ) <-> f e. ( R RngIso s ) ) ) |
5 |
4
|
exbidv |
|- ( r = R -> ( E. f f e. ( r RngIso s ) <-> E. f f e. ( R RngIso s ) ) ) |
6 |
2 5
|
anbi12d |
|- ( r = R -> ( ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) <-> ( ( R e. RingOps /\ s e. RingOps ) /\ E. f f e. ( R RngIso s ) ) ) ) |
7 |
|
eleq1 |
|- ( s = S -> ( s e. RingOps <-> S e. RingOps ) ) |
8 |
7
|
anbi2d |
|- ( s = S -> ( ( R e. RingOps /\ s e. RingOps ) <-> ( R e. RingOps /\ S e. RingOps ) ) ) |
9 |
|
oveq2 |
|- ( s = S -> ( R RngIso s ) = ( R RngIso S ) ) |
10 |
9
|
eleq2d |
|- ( s = S -> ( f e. ( R RngIso s ) <-> f e. ( R RngIso S ) ) ) |
11 |
10
|
exbidv |
|- ( s = S -> ( E. f f e. ( R RngIso s ) <-> E. f f e. ( R RngIso S ) ) ) |
12 |
8 11
|
anbi12d |
|- ( s = S -> ( ( ( R e. RingOps /\ s e. RingOps ) /\ E. f f e. ( R RngIso s ) ) <-> ( ( R e. RingOps /\ S e. RingOps ) /\ E. f f e. ( R RngIso S ) ) ) ) |
13 |
|
df-risc |
|- ~=R = { <. r , s >. | ( ( r e. RingOps /\ s e. RingOps ) /\ E. f f e. ( r RngIso s ) ) } |
14 |
6 12 13
|
brabg |
|- ( ( R e. A /\ S e. B ) -> ( R ~=R S <-> ( ( R e. RingOps /\ S e. RingOps ) /\ E. f f e. ( R RngIso S ) ) ) ) |