| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isrnghmd.b |
|- B = ( Base ` R ) |
| 2 |
|
isrnghmd.t |
|- .x. = ( .r ` R ) |
| 3 |
|
isrnghmd.u |
|- .X. = ( .r ` S ) |
| 4 |
|
isrnghmd.r |
|- ( ph -> R e. Rng ) |
| 5 |
|
isrnghmd.s |
|- ( ph -> S e. Rng ) |
| 6 |
|
isrnghmd.ht |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
| 7 |
|
isrnghmd.c |
|- C = ( Base ` S ) |
| 8 |
|
isrnghmd.p |
|- .+ = ( +g ` R ) |
| 9 |
|
isrnghmd.q |
|- .+^ = ( +g ` S ) |
| 10 |
|
isrnghmd.f |
|- ( ph -> F : B --> C ) |
| 11 |
|
isrnghmd.hp |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
| 12 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
| 13 |
|
ablgrp |
|- ( R e. Abel -> R e. Grp ) |
| 14 |
4 12 13
|
3syl |
|- ( ph -> R e. Grp ) |
| 15 |
|
rngabl |
|- ( S e. Rng -> S e. Abel ) |
| 16 |
|
ablgrp |
|- ( S e. Abel -> S e. Grp ) |
| 17 |
5 15 16
|
3syl |
|- ( ph -> S e. Grp ) |
| 18 |
1 7 8 9 14 17 10 11
|
isghmd |
|- ( ph -> F e. ( R GrpHom S ) ) |
| 19 |
1 2 3 4 5 6 18
|
isrnghm2d |
|- ( ph -> F e. ( R RngHom S ) ) |