| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrnghmmul.m |  |-  M = ( mulGrp ` R ) | 
						
							| 2 |  | isrnghmmul.n |  |-  N = ( mulGrp ` S ) | 
						
							| 3 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 4 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 5 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 6 | 3 4 5 | isrnghm |  |-  ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) | 
						
							| 7 | 1 | rngmgp |  |-  ( R e. Rng -> M e. Smgrp ) | 
						
							| 8 |  | sgrpmgm |  |-  ( M e. Smgrp -> M e. Mgm ) | 
						
							| 9 | 7 8 | syl |  |-  ( R e. Rng -> M e. Mgm ) | 
						
							| 10 | 2 | rngmgp |  |-  ( S e. Rng -> N e. Smgrp ) | 
						
							| 11 |  | sgrpmgm |  |-  ( N e. Smgrp -> N e. Mgm ) | 
						
							| 12 | 10 11 | syl |  |-  ( S e. Rng -> N e. Mgm ) | 
						
							| 13 | 9 12 | anim12i |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( M e. Mgm /\ N e. Mgm ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 15 | 3 14 | ghmf |  |-  ( F e. ( R GrpHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 16 | 13 15 | anim12i |  |-  ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) ) | 
						
							| 17 | 16 | biantrurd |  |-  ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) | 
						
							| 18 |  | anass |  |-  ( ( ( ( M e. Mgm /\ N e. Mgm ) /\ F : ( Base ` R ) --> ( Base ` S ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) | 
						
							| 19 | 17 18 | bitrdi |  |-  ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) ) | 
						
							| 20 | 1 3 | mgpbas |  |-  ( Base ` R ) = ( Base ` M ) | 
						
							| 21 | 2 14 | mgpbas |  |-  ( Base ` S ) = ( Base ` N ) | 
						
							| 22 | 1 4 | mgpplusg |  |-  ( .r ` R ) = ( +g ` M ) | 
						
							| 23 | 2 5 | mgpplusg |  |-  ( .r ` S ) = ( +g ` N ) | 
						
							| 24 | 20 21 22 23 | ismgmhm |  |-  ( F e. ( M MgmHom N ) <-> ( ( M e. Mgm /\ N e. Mgm ) /\ ( F : ( Base ` R ) --> ( Base ` S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) ) | 
						
							| 25 | 19 24 | bitr4di |  |-  ( ( ( R e. Rng /\ S e. Rng ) /\ F e. ( R GrpHom S ) ) -> ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) <-> F e. ( M MgmHom N ) ) ) | 
						
							| 26 | 25 | pm5.32da |  |-  ( ( R e. Rng /\ S e. Rng ) -> ( ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) <-> ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) | 
						
							| 27 | 26 | pm5.32i |  |-  ( ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) ( .r ` S ) ( F ` y ) ) ) ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) | 
						
							| 28 | 6 27 | bitri |  |-  ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ F e. ( M MgmHom N ) ) ) ) |